首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen storage has become one of the key challenges in the advancement of hydrogen utilization technologies during the past decades. Here, we report the excellent capability of single wall phosphorus nanotubes (SW-PNTs) in hydrogen storage by employing classic molecular dynamics simulation. Results demonstrate hydrogen is sequentially stored on both sides of the nanotube framework layer by layer, forming a wreath-like gathering area. The decomposition of free adsorption energy has revealed the wreath-like distribution leads to the enhanced binding of hydrogen via a synergetic contribution from both enthalpy and entropy. In phosphorus nanotubes, the storage performance is found to be strongly affected by the operative temperature and pressure, and the gravimetric storage of hydrogen molecules is estimated to be as high as 16.19 wt% at 77 K and 5 MPa. Our work has identified phosphorus as an efficient candidate for hydrogen storage and may provide an important implication in understanding the interaction between hydrogen and phosphorus materials.  相似文献   

2.
We report an efficient molybdenum disulfide (MoS2) supported by thermally reduced graphite oxide and carbon nanotubes (TRGO-CNT) for hydrogen evolution reaction. The TRGO-CNT-MoS2 composite is successfully prepared by a simple sonication process, exhibiting excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of −0.14 V, which is much lower compared to that of MoS2, CNT-MoS2 and TRGO-MoS2, respectively. TRGO-CNT-MoS2 also exhibits high stability even after 1000 cycles and strong durability after 48 h. The high HER performance of TRGO-CNT-MoS2 attributes to a synergic effect of thermal reduced GO and CNT that support MoS2 due to significant decrease of electrochemical impedance and reliable supporting material for the efficient HER.  相似文献   

3.
In this work, activated multi-walled carbon nanotubes (Acti-MWNTs) with well-developed pore structures, a highly specific surface area, and higher hydrogen adsorption capacities due to CO2 activation were prepared. The activation was performed at activation temperatures in the range of 500–1100 °C. The microstructure and crystallinity of the Acti-MWNTs were evaluated with a transmission electron microscope (TEM) and an FT-Raman spectrometer, respectively. The textural properties of the Acti-MWNTs were investigated by using a nitrogen gas sorption analyzer at 77 K. The hydrogen storage capacities of the Acti-MWNTs were investigated by BEL-HP at 298 K/100 bar. The hydrogen storage capacities of the Acti-MWNTs were enhanced to 0.78 wt.% by increasing activation temperatures to 900 °C, which resulted in the formation of a defective structure in the Acti-MWNTs. This result indicated that the CO2 activation was one of the most effective methods to develop the textural properties, as well as to enhance the hydrogen storage capacities of MWNTs.  相似文献   

4.
This work presents a bonding study of hydrogen adsorption processes on palladium decorated carbon nanotubes by using the density functional theory (DFT). First, we considered simple decoration models involving single palladium atoms or palladium dimers, and then we analyzed the adsorption of several molecular and dissociated hydrogen coordination structures, including Kubas-type complexes. In all cases we computed the energy, bonding and electronic structure for the different nanotube-supported hydrogen–palladium systems. Our results show that Pd(H2) and Pd2(H2) complexes with relaxed but not dissociated H–H bonds are the most stable adsorbed systems. The role of s, p and d orbitals on the bonding mechanism for all adsorbates and substrates was also addressed. We found intermolecular donor–acceptor C–Pd and Pd–H delocalizations after adsorption. We also studied the palladium clustering effect on the hydrogen uptake based on Kubas-type bonding.  相似文献   

5.
In situ hydrogen production technologies have attracted attentions because of hydrogen storage and transportation safety issues. Discharge plasma technology for hydrogen production is of fast response, large capacity, small scale and portability, which is suitable for automobiles and ships. In this paper, a method for producing hydrogen by microwave discharge in ethanol solution was introduced. A microwave discharge reactor of direct standing wave coupling (MDRSWC) was designed, which was suitable for on-board hydrogen production. The characteristics of large capacity hydrogen production by applying MDRSWC in liquid ethanol were investigated. Depending on the experimental conditions of ethanol concentration and microwave power, the flow rate of hydrogen production was achieved ranging from 28.93 to 72.48 g/h. In addition to main hydrogen and carbon dioxide, a small amount of methane and acetylene as by-products were detected. By optimizing the experimental conditions, the experimental results showed that the flow rate of hydrogen, the percentage concentration of hydrogen and the energy yield of hydrogen production were 72.48 g/h, 58.1% and 48.32 g/kWh respectively. This work could provide a potentially effective hydrogen production method for on-board hydrogen utilization device.  相似文献   

6.
We use ab initio density functional theory calculations to study the interaction of hydrogen with vacancies in boron nitride nanotubes to optimize the hydrogen storage capacity through defect engineering. The vacancies reconstruct by forming B–B and N–N bonds across the defect site, which are not as favorable as heteronuclear B–N bonds. Our total energy and structure optimization results indicate that the hydrogen cleaves these reconstructing bonds to form more stable atomic structures. The hydrogenated defects offer smaller charge densities that allow hydrogen molecule to pass through the nanotube wall for storing hydrogen inside the nanotubes. Our optimum reaction pathway search revealed that hydrogen molecules could indeed go through a hydrogenated defect site with relatively small energy barriers compared to the pristine nanotube wall. The calculated activation energies for different diameters suggest a preferential diameter range for optimum hydrogen storage in defective boron nitride nanotubes.  相似文献   

7.
Electrochemical hydrogen storage of multi-walled carbon nanotubes (MWCNTs) decorated by TiO2 nanoparticles (NPs) has been studied by the galvanostatic charge and discharge method. The TiO2 NPs are deposited on the surface of MWCNTs by sol-gel method. Structural and morphological characterizations have been carried out using XRD, SEM and TEM, respectively. TiO2 NPs can significantly enhance the discharge capacity of MWCNTs. The cyclic voltammograms analysis indicates that the electrical double layer contributes little to the discharge capacity of TiO2-decorated MWCNTs. The MWCNTs modified with a certain amount of TiO2 NPs have a discharge capacity of 540 mAh/g, corresponding to an electrochemical hydrogen storage capacity of about 2.02 wt%, which is quite interesting for the battery applications. The enhancement effect of TiO2 NPs on the discharge capacity of MWCNTs could be related to the increased effective area for the adsorption of hydrogen atoms in the presence of TiO2 NPs on MWCNTs and the preferable redox ability of TiO2 NPs.  相似文献   

8.
Discharge plasma reforming of methane to produce hydrogen has been a hotspot in recent years. At present, there is no report on liquid-phase discharge for methane reforming. In this paper, directly coupled liquid-phase microwave discharge plasma (LPMDP) is used for the first time to realize liquid-phase methane wet reforming to produce hydrogen. When methane gas is injected into the water in the reactor, plasma is generated in the water by microwave discharge. The type and relative intensity of active radicals produced during discharge are detected by emission spectroscopy. Methane gas is introduced into the reactor through two electrode structures. When the microwave power was 900 W, the optimal methane conversion rate reached 94.3%, and the highest concentration of hydrogen reached 74.0%. In addition, through the optimization of the electrode structure, while improving the stability of the plasma system, the higher yield of hydrogen and energy efficiency of hydrogen production were obtained, and the highest energy efficiency of hydrogen production was approximately 0.92 mmol/kJ. This investigation provides a new method for hydrogen production by liquid-phase plasma methane wet reforming.  相似文献   

9.
Cupric chloride is used as oxidant to synthesize polypyrrole doped with inorganic mineral (ImDPpy). The formation of ImDPpy was confirmed by 1HNMR, BET, SEM, HRTEM, DSC, FTIR, Raman, XRD, UV–vis and XPS studies. The surface area calculated for ImDPpy is 36.671 m2/g. Surface area of IMDPpy is 4.671 m2/g higher than the reported value of Ppy in the literature. In DSC, ImDPpy display a peak at 88.07 °C (endothermic glass transition temperature, Tg), Tg of ImDPpy is almost identical to that of Ppy-MWCNT composite and is higher than Tg of undoped Ppy. Electrochemical analysis of ImDPpy in 0.01 M NaOH indicated the maximum charge stored in ImDPpy in the form of protons as 8090 mF/g. The maximum hydrogen storage capacity of ImDPpy is found to be 18mAh/g at an applied current density of 1 mA/cm2. The mineral doped in Ppy during polymerization is identified as [Cu2(OH)3Cl] from XPS and Raman analysis.  相似文献   

10.
The use of hydrogen as an energy carrier is an attractive solution toward addressing global energy issues and reducing the effects of climate change. Design of new materials with high hydrogen sorption capacity and high stability is critical for hydrogen purification and storage. In this study, titanium dioxide nanotubes (TiO2NTs) were modified with palladium nanoparticles (PdNPs) utilizing a facile photo-assisted chemical deposition approach. Electrochemical anodization was employed for the direct growth of TiO2NTs. The PdNP functionalized TiO2NTs (TiO2NT/Pd) were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The hydrogen sorption behaviours and stability of the TiO2NT/Pd nanocomposites were investigated and compared with nanoporous Pd networks that were deposited on a bulk titanium substrate (Ti/Pd) using cyclic voltammetry (CV) and chronoamperometry (CA). Our studies show that the TiO2NT/Pd nanocomposites possess a much higher hydrogen storage capacity, faster kinetics for hydrogen sorption and desorption, and higher stability than the nanoporous Pd.  相似文献   

11.
A 3NaBH4/YF3 hydrogen storage composite was prepared through ball milling and its hydrogen sorption properties were investigated. It is shown that NaBH4 does not react with YF3 during ball milling. The dehydrogenation of the composite starts at 423 °C, which is about 100 °C lower than the dehydrogenation temperature of pure NaBH4, with a mass loss of 4.12 wt%. Pressure–Composition–Temperature tests reveal that the composite has reversible hydrogen sorption performance in the temperature range from 350 °C to 413 °C and under quite low hydrogenation plateau pressures (<1 MPa). Its maximum hydrogen storage capacity can reach up to 3.52 wt%. The dehydrogenated composite can absorb 3.2 wt% of hydrogen within 5 min at 400 °C. Based on the Pressure–Composition–Temperature analyses, the hydrogenation enthalpy of the composite is determined to be −46.05 kJ/mol H2, while the dehydrogenation enthalpy is 176.76 kJ/mol H2. The mechanism of reversible hydrogen sorption in the composite involves the decomposition and regeneration of NaBH4 through the reaction with YF3. Therefore, the addition of the YF3 to NaBH4 as a reagent forms a reversible hydrogen storage composite.  相似文献   

12.
Cobalt sulfide prepared by aqueous precipitation using Na2S and a Co(II) salt is known to trap hydrogen at room temperature and low pressure. The importance of oxidation of the primary CoS precipitate with atmospheric oxygen with respect to its efficiency as a hydrogen absorber is demonstrated. This stage of oxidation produces a mixture of two solid phases: a partially crystallized cobalt hydroxide Co(OH)2 and an amorphous cobalt sulfide CoS2 with a Co(OH)2/CoS2 molar ratio of 1 as predicted by thermodynamics. This biphasic product is probably the basic cobalt sulfide CoSOH considered in older and even more recent work. This product traps molecular hydrogen with a H2/Co molar ratio of 0.5 whereas unoxidized CoS precipitate traps almost no hydrogen (H2/Co = 0.025). Moderate acidic treatment of the absorber at room temperature leads to the selective dissolution of Co(OH)2. The remaining cobalt sulfide has CoS2 stoichiometry and reacts with hydrogen to form H2S gas and CoS. We showed that H2S released is reactive toward bases: CoS or Na2S were formed when H2S reacted with Co(OH)2 or NaOH, respectively. This proves that the hydrogen trapping reaction mechanism implies H2S as an intermediate species.  相似文献   

13.
The charging process of hydrogen storage tank based on bed of activated carbon in a steel container at room temperature (295 K) and medium storage pressure (10 MPa) is simulated with an axisymmetric geometry model using the finite volume commercial solver Fluent. The mass flux profile at the entrance is established using user-defined functions (UDFs). The heat and mass transfer processes in the cylindrical steel tank packed with activated carbon are discussed considering the influence of viscous resistance and inertial resistance of the porous media. The velocity distribution and its effect on the temperature distribution are analyzed. The effects of the flow rate at the inlet and of the adsorption factor on the charging process are studied. A computational fluid dynamics (CFD) approach based on finite volume simulations is used. Results show that the temperature near the bottom of the tank is higher than that at the entrance, temperature in the center of the tank is higher than that near the wall and rises somewhat faster along the axial compared to the radial direction. The highest hydrogen absolute adsorption occurs at the entrance of the tank. A good agreement is found between the simulation results and the available experimental data. The maximum magnitude of the axial velocity is much higher than that of the radial component, resulting in more heat energy transfer along the axial direction than radial direction. In addition, the pressure reaches equilibrium earlier when the mass flow is higher, and the temperature reaches a maximum value faster.  相似文献   

14.
Experiments and numerical simulations were conducted for evaluating measures for enhancing adsorption capacity and heat conducting of an on board MOFs hydrogen storage system by cryo-adsorption. Solvothermal method was employed to synthesize MIL-101(Cr) composite by incorporating activated carbon. The composite was undergone structure characterization, structural morphology observation, thermal conductivity measurement and measurement of isotherm of hydrogen adsorption at 77.15 K within 0–6 MPa. Effect of adding expanded natural graphite (ENG) and equipping a honeycomb heat exchanging device (HHED) on mitigating the thermal effect on a 0.5 L hydrogen storage vessel packed with composite was investigated within a flow rate of hydrogen required by a ship's power unit. It shows that the sample incorporated by 1 wt% activated carbon respectively obtained about 14.5%, 26.2% and 5.7% increment in specific surface area, micropore volume and the maximum excess adsorption amount. Results also reveal that, within the flow rate 5 L·min?1-25 L min?1, the mean relative error between the experimental data and those from simulations is less than 1.61%, and the reduction in temperature fluctuation of the storage system is about 5 °C and 4 °C on charge and discharge process while equipping the HHED, which accordingly brought about 17%, 24.3%, 18.5% increment in accumulated amount of charge and discharge as well as the useable capacity ratio (UCR) of the system. It suggests that equipping a HHED is a more promising method for weakening the thermal effect on MOFs-hydrogen storage systems.  相似文献   

15.
This work aims at resolving the discrepancy between theoretical predictions on the physical adsorption of molecular hydrogen on carbonaceous solids, by exploiting molecular dynamics simulations of the adsorption process. In continuance of our previous work, three models were constructed for the depiction of the microporous carbonaceous structure. The first one (SSM) consisted of only two parallel sheets, being the lightest one used. The second (IHM) and third (HWM) models comprised structural imperfections in the form of pits and holes into their structure. Structural imperfections seemed to have a slight augmentative effect on the adsorption process. It was concluded that the addition of extra sheets to the walls did not result to any enhancement of the adsorption efficiency of the solid model. On the contrary, the lightest model exhibited superb results for the % weight-by-weight adsorption of hydrogen, approaching the highest value reported. Finally, a couple of suggestions on the development of a material for the storage of hydrogen were derived, based on the above conclusions.  相似文献   

16.
Pd doped Multi-Walled Carbon Nanotubes were prepared via supercritical carbon dioxide deposition method in order to enhance the hydrogen uptake capacity of carbon nanotubes at ambient conditions. A new bipyridyl precursor that enables reduction at moderate conditions was used during preparation of the sample. Both XRD analyses and TEM images confirmed that average Pd nanoparticle size distribution was around 10 nm. Hydrogen adsorption and desorption experiments at room temperature with very low pressures (0–0.133 bar) were conducted together with temperature programmed desorption (TPD) and reduction (TPR) experiments on undoped and doped materials to understand the complete hydrogen uptake profile of the materials. TPD experiments showed that Pd nanoparticles increased the hydrogen desorption activity at moderate temperatures around at 38 °C while for undoped materials it was determined around at 600 °C. Moreover, a drastic enhancement of hydrogen storage was recorded from 44 μmol/g sample for undoped material to 737 μmol/g sample for doped material through adsorption/desorption isotherms at room temperature. This enhancement, also verified by TPR, was attributed to spillover effect.  相似文献   

17.
The de-/rehydrogenation features of the 6LiBH4/SrF2 reactive hydride system have been systematically investigated. It was found that the thermal stability of LiBH4 can be reduced markedly by combining it with SrF2. Dehydrogenation of the 6LiBH4/SrF2 system proceeds via the 6LiBH4 + SrF2 → SrB6 + 2LiF + 4LiH + 10H2 reaction, which involves SrH2 as the intermediate product. The dehydrogenation enthalpy change was experimentally determined to be 52 kJ/mol H2 based on the P–C isotherm analysis. For rehydrogenation, LiBH4 and SrF2 were regenerated along with LiSrH3 at 450 °C under ~8 MPa hydrogen pressure; thus, approximately 5.2 wt% of hydrogen can be released during the second dehydrogenation process.  相似文献   

18.
The conventional treatment method for H2S is the Claus process, which produces sulfur and water. This results in a loss of the valuable potential product hydrogen. H2S treatment would be more economically valuable if both hydrogen and sulfur products could be recovered. Based on standard heats of formation analysis, the theoretical energy required to produce hydrogen from H2S dissociation is only 20.6 kJ/mol of H2 as compared to 63.2 kJ/mol of H2 from steam methane reforming and 285.8 kJ/mol of H2 from water electrolysis. Among the many thermal decomposition methods that have been explored in the literature, Micro-wave plasma dissociation of H2S prevails as the method of choice to attain the best conversion and energy efficiency. Chemical kinetics simulations using an ideal flow reactor network have been carried out on the CHEMKIN-PRO software package and they support these findings. The reactor network simulates the thermal plasma behavior in the plasma torch, the plasma reactor, and the sulfur condenser. Two chemical kinetics mechanisms have been used and the results show an almost complete conversion of H2S into hydrogen and sulfur in the plasma reactor at an optimum temperature of about 2400 K at atmospheric pressure. While the most challenging task of the process is found to be the plasma cooling rate at the sulfur condenser where very fast quenching is required to conserve the hydrogen product from converting back to H2S.  相似文献   

19.
Microwave radiation can effectively heat chemical reactors in which bulky, branched and polycondensed naphthenes convert into the appropriate aromatics at atmospheric pressure. Two types of catalysts, traditional Pt/C and bifunctional Ni–silica–alumina, were used for dehydrogenation of naphthenes under microwave radiation. From the dehydrogenation reaction in microwave mode and in conventional heating mode, it was found that the catalytic activity in microwave mode increased more greatly than that in conventional heating mode at the same reaction temperatures. Such an effect may result from the fact that the temperature of the metal particles (Pt, Ni) in microwave mode is higher than the average temperature of the catalyst bed in thermal mode.  相似文献   

20.
In this work, a mixed-cation borohydride (K2Mn(BH4)4) with P21/n structure was successfully synthesized by mechanochemical milling of the 2KBH4–MnCl2 sample under argon. The structural and thermal decomposition properties of the borohydride compounds were investigated using XRD, Raman spectroscopy, FTIR, TGA-MS and DSC. Apart from K2Mn(BH4)4, the KMnCl3 and unreacted KBH4 compounds were present in the milled 2KBH4–MnCl2. The two mass loss regions were observed for the milled sample: one was from 100 to 160 °C with a 1.6 ± 0.1 wt% loss (a release of majority hydrogen and trace diborane), which was associated with the decomposition of K2Mn(BH4)4 to form KBH4, boron, and finely dispersed manganese; the other was from 165 to 260 °C with a 1.9 ± 0.1 wt% loss (only hydrogen release), which was due to the reaction of KBH4 with KMnCl3 to give KCl, boron, finely dispersed manganese. Simultaneously, the formed KCl could dissolve in KBH4 to yield a K(BH4)xCl1−x solid solution, and also react with KMnCl3 to form a new compound K4MnCl6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号