共查询到20条相似文献,搜索用时 0 毫秒
1.
Sandra Kurko Annalisa Aurora Daniele Mirabile Gattia Vittoria Contini Amelia Montone Željka Rašković-Lovre Jasmina Grbović Novaković 《International Journal of Hydrogen Energy》2013
The hydrogen sorption properties of magnesium hydride–sodium borohydride composites prepared by means of high-energy ball milling under Ar atmosphere were investigated. Mutual influence of milling time and the content of NaBH4 were studied. Microstructural and morphological analyses were carried out using X-ray Diffraction (XRD), laser scattering measurements and Scanning Electron Microscopy (SEM), while kinetic analysis and cycling were performed in a Sievert's volumetric apparatus. It has been shown that low content of NaBH4 and short milling time are beneficial for hydrogen sorption kinetics. 相似文献
2.
A 3NaBH4/YF3 hydrogen storage composite was prepared through ball milling and its hydrogen sorption properties were investigated. It is shown that NaBH4 does not react with YF3 during ball milling. The dehydrogenation of the composite starts at 423 °C, which is about 100 °C lower than the dehydrogenation temperature of pure NaBH4, with a mass loss of 4.12 wt%. Pressure–Composition–Temperature tests reveal that the composite has reversible hydrogen sorption performance in the temperature range from 350 °C to 413 °C and under quite low hydrogenation plateau pressures (<1 MPa). Its maximum hydrogen storage capacity can reach up to 3.52 wt%. The dehydrogenated composite can absorb 3.2 wt% of hydrogen within 5 min at 400 °C. Based on the Pressure–Composition–Temperature analyses, the hydrogenation enthalpy of the composite is determined to be −46.05 kJ/mol H2, while the dehydrogenation enthalpy is 176.76 kJ/mol H2. The mechanism of reversible hydrogen sorption in the composite involves the decomposition and regeneration of NaBH4 through the reaction with YF3. Therefore, the addition of the YF3 to NaBH4 as a reagent forms a reversible hydrogen storage composite. 相似文献
3.
Guiling Wang Xunying Wang Rongrong Miao Dianxue Cao Kening Sun 《International Journal of Hydrogen Energy》2010
Activation of the MmNi4.03Co0.42Mn0.31Al0.24 hydrogen storage alloy electrode is performed by immersing the electrode in a solution containing 6.0 mol dm−3 NaOH and 0.1 mol dm−3 NaBH4. The effects of activation on the electrocatalytic activity of the electrode for NaBH4 oxidation are investigated by cyclic voltammetry and chronoamperometry. Immersion activation greatly improves the electrocatalytic activity of the alloy electrode. Hydrogen was absorbed in the alloy during the immersion activation treatment and its electrooxidation is responsible for the high initial oxidation current. The stabilized current mainly results from the direct oxidation starting from the borohydride species. The effects of activation on structure and surface chemistry of the alloy are also discussed. 相似文献
4.
Jianfeng MaoZaiping Guo Xuebin Yu Mohammad IsmailHuakun Liu 《International Journal of Hydrogen Energy》2011,36(9):5369-5374
The mutual destabilization of LiAlH4 and MgH2 in the reactive hydride composite LiAlH4-MgH2 is attributed to the formation of intermediate compounds, including Li-Mg and Mg-Al alloys, upon dehydrogenation. TiF3 was doped into the composite for promoting this interaction and thus enhancing the hydrogen sorption properties. Experimental analysis on the LiAlH4-MgH2-TiF3 composite was performed via temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), isothermal sorption, pressure-composition isotherms (PCI), and powder X-ray diffraction (XRD). For LiAlH4-MgH2-TiF3 composite (mole ratio 1:1:0.05), the dehydrogenation temperature range starts from about 60 °C, which is 100 °C lower than for LiAlH4-MgH2. At 300 °C, the LiAlH4-MgH2-TiF3 composite can desorb 2.48 wt% hydrogen in 10 min during its second stage dehydrogenation, corresponding to the decomposition of MgH2. In contrast, 20 min was required for the LiAlH4-MgH2 sample to release so much hydrogen capacity under the same conditions. The hydrogen absorption properties of the LiAlH4-MgH2-TiF3 composite were also improved significantly as compared to the LiAlH4-MgH2 composite. A hydrogen absorption capacity of 2.68 wt% under 300 °C and 20 atm H2 pressure was reached after 5 min in the LiAlH4-MgH2-TiF3 composite, which is larger than that of LiAlH4-MgH2 (1.75 wt%). XRD results show that the MgH2 and LiH were reformed after rehydrogenation. 相似文献
5.
The effect of lithium borohydride (LiBH4) on the hydriding/dehydriding kinetics and thermodynamics of magnesium hydride (MgH2) was investigated. It was found that LiBH4 played both positive and negative effects on the hydrogen sorption of MgH2. With 10 mol.% LiBH4 content, MgH2–10 mol.% LiBH4 had superior hydrogen absorption/desorption properties, which could absorb 6.8 wt.% H within 1300 s at 200 °C under 3 MPa H2 and completed desorption within 740 s at 350 °C. However, with the increasing amount of LiBH4, the hydrogenation/dehydrogenation kinetics deteriorated, and the starting desorption temperature increased and the hysteresis of the pressure-composition isotherm (PCI) became larger. Our results showed that the positive effect of LiBH4 was mainly attributed to the more uniform powder mixture with smaller particle size, while the negative effect of LiBH4 might be caused by the H–H exchange between LiBH4 and MgH2. 相似文献
6.
Jianfeng Mao Zaiping Guo Huakun Liu 《International Journal of Hydrogen Energy》2011,36(22):14503-14511
The effect of NbF5 on the hydrogen sorption performance of NaAlH4 has been investigated. It was found that the dehydrogenation/hydrogenation properties of NaAlH4 were significantly enhanced by mechanically milling with 3 mol% NbF5. Differential scanning calorimetry results indicate that the ball-milled NaAlH4-0.03NbF5 sample lowered the completion temperature for the first two steps dehydrogenation by 71 °C compared to the pristine NaAlH4 sample. Isothermal hydrogen sorption measurements also revealed a significant enhancement in terms of the sorption rate and capacity, in particular, at reduced operation temperatures. The apparent activation energy for the first-step and the second-step dehydrogenation of the NaAlH4-0.03NbF5 sample is estimated to be 88.2 kJ/mol and 102.9 kJ/mol, respectively, by using Kissinger’s approach, which is much lower than for pristine NaAlH4, indicating the reduced kinetic barrier. The rehydrogenation kinetics of NaAlH4 was also improved with 3 mol% NbF5 doping, absorbing ∼1.7 wt% hydrogen at 150 °C for 2 h under ∼5.5 MPa hydrogen pressure. In contrast, no hydrogen was absorbed by the pristine NaAlH4 sample under the same conditions. The formation of Na3AlH6 was detected by X-ray diffraction on the rehydrogenated NaAlH4-0.03NbF5 sample. Furthermore, the structural changes in the NbF5-doped NaAlH4 sample after ball milling and the hydrogen sorption were carefully examined, and the active species and mechanism of catalysis in NbF5-doped NaAlH4 are discussed. 相似文献
7.
In this paper we report the solution combustion synthesis of cobalt oxide nanofoam from solutions of cobalt nitrate and glycine and subsequent use as an effective catalyst precursor for NaBH4 hydrolysis. The catalytic activity results show that the hydrogen generation rate (HGR) at room temperature was much higher for the solution combustion synthesized material than for commercial Co3O4 nanopowder, though their specific surface areas were comparable (∼26–32 m2/g). Using a 0.6 wt.% aqueous solution of NaBH4 at 20 °C and a 5 wt.% catalyst precursor loading, a HGR of 1.93 L min−1 gcat−1 was achieved for solution combustion synthesized Co3O4. In contrast, at the same conditions, for commercial Co3O4 and elemental Co powders HGRs of 0.98 and 0.49 L min−1 gcat−1 were achieved respectively. This type of synthesis is amenable to many complex metal oxide catalysts as well, such as LiCoO2, which have also been shown to be good catalyst precursors for hydrolysis of NaBH4. 相似文献
8.
Shiping Huang Chuan Liu Jia Li Peng Wang Huiping Tian 《International Journal of Hydrogen Energy》2014
The synergistic effects of Ti and F co-doping on the structure and dehydrogenation properties of NaBH4 are investigated by using density functional theory calculations. The results show that Ti is more likely to substitute Na, while F tends to replace the H in the BH4 unit. It is found that Ti and F co-doped NaBH4 systems are more stable than Ti-doped NaBH4 system. The results of hydrogen desorption energies imply that the co-doped Ti and F decrease the strength of B–H bonds. In addition, the hydrogen desorption energies decrease as increasing the concentration of F atoms. The dehydrogenation reaction of Ti and F co-doped NaBH4 is more likely to form TiB2, B, NaF, and H2. 相似文献
9.
Chan-Li Hsueh Chuh-Yung Chen Jie-Ren Ku Shing-Fen Tsai Ya-Yi Hsu Fanghei Tsau Ming-Shan Jeng 《Journal of power sources》2008
Polymer template-Ru composite (Ru/IR-120) catalyst was prepared using a simple and fast method for generating hydrogen from an aqueous alkaline NaBH4 solution. The hydrogen generation rate was determined as a function of solution temperature, NaBH4 concentration, and NaOH (a base-stabilizer) concentration. The maximum hydrogen generation rate reached 132 ml min−1 g−1 catalyst at 298 K, using a Ru/IR-120 catalyst that contained only 1 wt.% Ru. The catalyst exhibits a quick response and good durability during the hydrolysis of alkaline NaBH4 solution. The activation energy for the hydrogen generation reaction was determined to be 49.72 kJ mol−1. 相似文献
10.
Jun MaJie Li Renying TangDongwei Li Wenzhang LiQiyuan Chen 《International Journal of Hydrogen Energy》2011,36(15):9091-9097
The co-effects of lanthanide oxide Tm2O3 and porous silica on the hydrogen storage properties of sodium alanate are investigated. NaAlH4-Tm2O3 (10 wt%) and NaAlH4-Tm2O3 (10 wt%)-porous SiO2 (10 wt%) are prepared by the ball milling method, and their hydrogen desorption/re-absorption capacities are compared. Dehydrogenation process was performed at 150 °C under vacuum and rehydrogenation was performed at 150 °C for 4 h under ∼9 MPa in highly pure hydrogen. The results show that Tm2O3 has a catalytic effect on the hydrogen desorption and re-absorption of NaAlH4. The hydrogen desorption capacity of Tm2O3 single-doped NaAlH4 is 4.6 wt%, higher than that of undoped NaAlH4 (4.3 wt%). During the dehydrogenation process, NaAlH4 is completely decomposed and no intermediate product Na3AlH6 is detected. The addition of porous silica improves the dehydrogenation performance of NaAlH4. Tm2O3 and porous silica co-doped NaAlH4 could release a maximum hydrogen amount of 4.7 wt%, higher than that of undoped NaAlH4 and Tm2O3 single-doped NaAlH4. Moreover, porous silica improves the reversibility of hydrogen storage in NaAlH4. 相似文献
11.
Thermochemical recycling of hydrolyzed NaBH4. Part II: Systematical study of parameters dependencies
This paper focuses on the yields of both main product NaBH4 and byproduct MgH2 of the thermochemical process. The influence of parameters such as i) the isothermal reaction temperature in the range 480 °C–660 °C, ii) the stoichiometric ratio of solid reactants NaBO2:Mg prepared from 1:2 to 1:8, iii) H2 pressure supplied from 2 to 31 bars and iv) the reaction time kept at isotherm from 0 to 16 h have been systematically investigated. The yields are estimated by in-situ and ex-situ evaluations. Two temperature regimes for MgH2 and NaBH4 formation are recognized from 370 °C to 450 °C and above 500 °C respectively. With regard to NaBH4 regeneration, temperature is the most important factor that positively accelerates the apparent reaction rate between 500 °C and 650 °C providing a sufficient H2 pressure. To efficiently obtain high NaBH4 yield mixtures with molar stoichiometric ratio between solid reactants not less than 1:4 is suggested. Experimental results also reveal that at 12 bars of H2 pressure high NaBH4 yield is obtained. Hence, more efficient way to improve mass transfer of solid reactants (e.g. advance reactor enhances mobility of reactants) rather than increasing H2 pressures is advised. Under optimized condition, 100% conversion of NaBO2 can be achieved within 1.5 h. 相似文献
12.
Zheng Xueping Xiao GuoLiu Shenglin Feng XinZheng Jiaojiao 《International Journal of Hydrogen Energy》2012
This study investigated the effect of Nd2O3 and Gd2O3 as catalyst on hydrogen desorption behavior of NaAlH4. Pressure-content-temperature (PCT) equipment measurement proved that both two oxides enhanced the dehydrogenation kinetics distinctly and increasing Nd2O3 and Gd2O3 from 0.5 mol% to 5 mol% caused a similar effect trend that the dehydrogenation amount and average dehydrogenation rate increased firstly and then decreased under the same conditions. 1 mol% Gd2O3–NaAlH4 presented the largest hydrogen desorption amount of 5.94 wt% while 1 mol% Nd2O3–NaAlH4 exerted the fastest dehydrogenation rate. Scanning Electron microscopy (SEM) analysis revealed that Gd2O3–NaAlH4 samples displayed uniform surface morphology that was bulky, uneven and flocculent. The difference of Nd2O3–NaAlH4 was that with the increasing of Nd2O3 content, the particles turned more and more big. Compared to dehydrogenation behavior, this phenomenon demonstrated that small particles structure were beneficial to hydrogen desorption. Besides, the further study found that different catalysts and addition amounts had different effects on the microstructure of NaAlH4. 相似文献
13.
Yindee Suttisawat Visara Jannatisin Pramoch Rangsunvigit Boonyarach Kitiyanan Nongnuj Muangsin Santi Kulprathipanja 《Journal of power sources》2007
The main objective of this work was to investigate the different effects of transition metals (TiO2, VCl3, HfCl4) on the hydrogen desorption/absorption of NaAlH4. The HfCl4 doped NaAlH4 showed the lowest temperature of the first desorption at 85 °C, while the one doped with VCl3 or TiO2 desorbed at 135 °C and 155 °C, respectively. Interestingly, the temperature of desorption in subsequent cycles of the NaAlH4 doped with TiO2 reduced to 140 °C. On the contrary, in the case of NaAlH4 doped with HfCl4 or VCl3, the temperature of desorption increased to 150 °C and 175 °C, respectively. This may be because Ti can disperse in NaAlH4 better than Hf and V; therefore, this affected segregation of the sample after the desorption. The maximum hydrogen absorption capacity can be restored up to 3.5 wt% by doping with TiO2, while the amount of restored hydrogen was lower for HfCl4 and VCl3 doped samples. XRD analysis demonstrated that no Ti-compound was observed for the TiO2 doped samples. In contrast, there was evidence of Al–V alloy in the VCl3 doped sample and Al–Hf alloy in the HfCl4 doped sample after subsequent desorption/absorption. As a result, the V- or Hf-doped NaAlH4 showed the lower ability to reabsorb hydrogen and required higher temperature in the subsequent desorptions. 相似文献
14.
Anthony Garron Dariusz ŚwierczyńskiSimona Bennici Aline Auroux 《International Journal of Hydrogen Energy》2009
To our knowledge, the present study is the first investigation by liquid-phase calorimetry of the mechanism of hydrogen generation by hydrolysis of sodium borohydride catalyzed by Co2B nanoparticles generated in situ. The differential reaction calorimeter was coupled with a volumetric hydrogen measurement, allowing a simultaneous thermodynamic and kinetic study of the reaction. At the end of the reaction, the catalyst was characterized ex situ by TEM, XRD, magnetism, N2 adsorption, TGA–DTA, and the liquid hydrolysis products were analyzed by Wet-STEM and 11B-NMR. The in situ preparation method made it possible to form nanoparticles (<12 nm) of Co2B which are the active phase for the hydrolysis reaction. In semi-batch conditions, the Co2B catalyst formed in situ is subsequently reduced by each borohydride addition and oxidized at the end of the hydrolysis reaction by OH− in the presence of metaborate. A coating of the nanoparticles has been observed by calorimetry and physico-chemical characterization, corresponding to the formation of a 2–3 nm layer of cobalt oxide or hydroxide species. 相似文献
15.
Huiping Yuan Xugang ZhangZhinian Li Jianhua YeXiumei Guo Shumao WangXiaopeng Liu Lijun Jiang 《International Journal of Hydrogen Energy》2012
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides. 相似文献
16.
Mei-qiang Fan Shu LiuWen-qiang Sun Yong FeiHua Pan Chun-Ju LvDa Chen Kang-Ying Shu 《International Journal of Hydrogen Energy》2011,36(24):15673-15680
On-demand hydrogen generation from solid-state Al/NaBH4 hydrolysis activated by Li-NiCl2 additives are elaborated in the present paper. Hydrogen generation amount and rate can be regulated by changing Al/NaBH4 weight ratio, Li and NiCl2 amount, hydrolytic temperature, etc. The optimized Al−10 wt.% Li−15 wt.% NiCl2/NaBH4 mixture (weight ratio of 1:1) yields 1778 ml hydrogen/1 g mixture with 100% efficiency within 50 min at 323 K. The improved hydrolytic performance comes from the effect of Li-NiCl2 additives, which decrease aluminum particle size in the milling process and produce the catalytic promoter BNi2/Al(OH)3 in the hydrolytic process. Compared with the conventional reaction of Al and NaBH4 in water, there is an interaction of Al/NaBH4 hydrolysis which improves the hydrolytic kinetics of Al/NaBH4 via the catalytic effect of hydrolysis by-products Al(OH)3, BNi2, and NaBO2. The Al/NaBH4 mixture may be applied as a portable hydrogen generation material. Our experimental data lay a foundation for designing practical hydrogen generators. 相似文献
17.
Shu-Sheng Liu Li-Xian Sun Yao Zhang Fen Xu Jian Zhang Hai-Liang Chu Mei-Qiang Fan Tao Zhang Xiao-Yan Song Jean Pierre Grolier 《International Journal of Hydrogen Energy》2009
In the present work, the catalytic effect of TiF3 on the dehydrogenation properties of LiAlH4 has been investigated. Decomposition of LiAlH4 occurs during ball milling in the presence of 4 mol% TiF3. Different ball milling times have been used, from 0.5 h to 18 h. With ball milling time increasing, the crystallite sizes of LiAlH4 get smaller (from 69 nm to 43 nm) and the dehydrogenation temperature becomes lower (from 80 °C to 60 °C). Half an hour ball milling makes the initial dehydrogenation temperature of doped LiAlH4 reduce to 80 °C, which is 70 °C lower than as-received LiAlH4. About 5.0 wt.% H2 can be released from TiF3-doped LiAlH4 after 18 h ball milling in the range of 60 °C–145 °C (heating rate 2 °C min−1). TiF3 probably reacts with LiAlH4 to form the catalyst, TiAl3. The mechanochemical and thermochemical reactions have been clarified. However, the rehydrogenation of LiAlH4/Li3AlH6 can not be realized under 95 bar H2 in the presence of TiF3 because of their thermodynamic properties. 相似文献
18.
Mei-qiang Fan Shu Liu Li-Xian Sun Fen Xu Shuang Wang Jian Zhang De-sheng Mei Fen-lei Huang Qing-ming Zhang 《International Journal of Hydrogen Energy》2012
Solid-state AlLi/NaBH4 mixture activated by CoCl2 salt is fabricated for hydrogen generation via a milling process, providing uniform dispersion of AlLi alloy and CoCl2 salt among pulverized NaBH4 particles in order to improve NaBH4 hydrolysis through the contact of NaBH4 with active catalytic sites. The active catalytic sites come from Co2B loaded in Al(OH)3 (Bayerite) or LiAl2(OH)7 hydrate, generated from the reaction of CoCl2, AlLi alloy, and NaBH4 in water. The results show that the gravimetric hydrogen storage capacity is as high as 6.4 wt.% and an efficiency of above 90% in 30-min hydrolysis at 323 K could be achieved using the limited amount of water. The hydrogen generation amount and rate could be regulated by changing the composition, mixing style, mixture/water weight ratio, and hydrolysis temperature. The relative mechanism is explored. 相似文献
19.
20.
Xiaofeng Wang Shaorui Sun Zili Huang Haijun Zhang Shaowei Zhang 《International Journal of Hydrogen Energy》2014
Poly(N-vinyl-2-pyrrolidone)(PVP)-protected Au/Ni bimetallic nanoparticles (BNPs) were prepared in one-vessel via chemical reduction of the corresponding ions with dropwise addition of NaBH4, and their catalytic activity in the hydrogen generation from hydrolysis of a basic NaBH4 solution was examined. The structure, particle size, and chemical composition of the resultant BNPs were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM) and High-resolution transmission electron microscopy (HR-TEM). The effects of processing parameters such as metal composition, metal ion concentration, and mole ratio of PVP to metal ion on the hydrolysis of a basic NaBH4 solution were studied in detail. The results indicated that as-prepared Au/Ni BNPs showed a higher catalytic activity than corresponding monometallic NPs (MNPs) in the hydrogen generation from the hydrolysis reaction of a basic NaBH4 solution. Among all the MNPs and BNPs, Au/Ni BNPs with the atomic ratio of 50/50 exhibited the highest catalytic activity, showing a hydrogen generation rate as high as 2597 mL-H2 min−1 g-catalyst−1 at 30 °C, which can be ascribed to the presence of negatively charged Au atoms and positively charged Ni atoms. Based on the kinetic study of the hydrogen generation from the hydrolysis reaction of a basic NaBH4 solution over the PVP-protected Au/Ni BNPs, the corresponding apparent activation energy was determined as 30.3 kJ/mol for the BNPs with the atomic ratio of 50/50. 相似文献