首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, a knife-shaped gliding arc discharge (GAD) reactor driven by high frequency AC (HFAC) power was employed to convert CO2 and CH4. The HFAC GAD exhibited good performance in dry reformation of CO2CH4. The development process with the HFAC GAD at a low gas flow rate was recorded and it is discussed with U-I waveforms and discharge images. The effects of input voltage, total gas flow rate, minimum electrode gap distance, and electrode thickness were investigated in terms of the CO2CH4 conversion rate, selectivity of CO, H2, and C2 hydrocarbons, specific energy density, and energy efficiency. The energy efficiency ranged from 1.58 to 2.21 mmol/kJ under changing operating conditions. The best conversions of CO2 and CH4 were achieved as 52.32% and 58.85%, respectively, with an energy efficiency of 1.65 mmol/kJ.  相似文献   

2.
Energy storage efficiency is calculated for the solar thermochemical energy transfer system based on ammonia/hydrogen-nitrogen. the calculation for this system involves generation of thermodynamic data not available in the literature by a method in which use is made of the available phase equilibrium measurements together with application of the criterion that the correct value of separation work for a two-phase mixture must be generated internally by degradation of mixing heat. Energy storage efficiencies for ammonia/hydrogen-nitrogen are derived from the generated thermodynamic data and are shown to increase towards unity as the endothermic reaction approaches completion, with efficiencies greater than 0.90 being obtained for reaction extents exceeding 0.60. the validity of the analysis has been tested successfully by comparison between the thermodynamic predictions and experimental data in the form of measurements of the waste heat rejected from a counterflow heat exchanger operated with liquid ammonia feed and ammonia/hydrogen-nitrogen output.  相似文献   

3.
4.
The production of hydrogen from hydrogen compounds for fuel cell or internal combustion engine applications is a potential method for responding to the energy crisis and environmental problems. In this work carbon dioxide reforming of methane and decomposition of ammonia using a Laval nozzle arc discharge (LNAD) reactor has been exploited at atmospheric pressure without external heating or catalysts. CH4 (or NH3) conversion and H2 selectivity were observed to be negatively correlated with the concentration of CH4 (or NH3) and the flux of CO2 (N2) and positively correlated with voltage and the Laval nozzle throat radius. Power consumption increased with the concentration of methane at the same CO2 flow rate, and the conversion of methane gradually increased with the content of water vapor in the gas mixture. A high conversion rate and fair H2 selectivity were achieved, 51% and 37.5%, respectively, when the methane and carbon dioxide flow rates were 4 L/min and 14 L/min, respectively, and the minimum distance between the two electrodes was 2.5 mm. The LNAD reactor used in this study exhibited a good conversion rate and low energy consumption, which should be suitable for the industrial scale-up of the system.  相似文献   

5.
Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier.  相似文献   

6.
Hydrogen has emerged as an eco-friendly energy to replace fossil fuels. But, it is difficult to store large capacity and to transport long distance due to a low volumetric energy density. In order to overcome the disadvantages of hydrogen, hydrogen supply chains are being widely studied and reported to compare which chains are better to be deployed. However, few studies have reported in terms of an environmental impact assessment. Therefore, in this study, an environmental impact is analyzed using a life cycle assessment (LCA) for offshore hydrogen supply chains linked to offshore wind farms, as well as an energy efficiency. The hydrogen supply chains include all stages of converting hydrogen produced on an offshore platform into compressed gaseous hydrogen (CGH2), liquefied hydrogen (LH2), liquid organic hydrogen carriers (LOHC), or ammonia (NH3), transporting them to an onshore plant and storing as CGH2. In particular, in order to calculate the amount of fuel consumed in ship transportation, the weight of cargo is estimated accordingly. The results vary depending on the electrical energy sources used and the transport distance. In almost all stages except for transport, electrical energy sources have a significant impact on the environmental load. The global warming potential (GWP), which is an alternate value of greenhouse gas emissions, is in the range of 1.15–10.11 kg CO2 eq when the national electricity grid and the offshore wind power (W + G) are used together. On the other hand, it shows a much lower value as 1.15–2.05 kg CO2 eq when using only offshore wind power (W). As the transport distance increased, it is significantly affected in some impact categories, i.e. GWP, acidification potential (AP), and eutrophication potential (EP). The contribution of transport gradually increased, and at 10,000 km, the value was 25.32–35.42 kg CO2 eq for W + G and 24.88–27.49 kg CO2 eq for W. Comparing the efficiency, CGH2 is the highest at all transport distances, followed by NH3, LOHC, and LH2. Considering that CGH2 is typically unfeasible for ship transport, hydrogen transport using NH3 can be the most attractive option. Finally, it is found that the longer the transport distance, the greater the effect on chain efficiency. Accordingly, the efficiency of the chains sharply decreases as the transport distance increases.  相似文献   

7.
In this paper, reaction engineering principles are utilized to analyze process conditions for producing sufficient hydrogen in an ammonia decomposition reactor for generating net power of 100 W in a fuel cell. It is shown that operating the reactor adiabatically results in a sharp decrease in temperature due to endothermic reaction, which results in low conversion of ammonia. For this reason, the reactor is heated electrically to provide heat for the endothermic reactions. It is observed that when the reactor is operated non-adiabatically, it is possible to get over 99.5% conversion of ammonia. The weight of absorbent to reduce ammonia to ppb levels is calculated. An energy balance on the reactor exit gas indicates that there is sufficient heat available to vaporize enough water to achieve 100% relative humidity in the fuel cell. A suitable fuel cell stack is designed and it is shown that this stack is able to provide the necessary power to electrically heat the reactor and produce net power of 100 W.  相似文献   

8.
Determining the complete energy balance of an electric arc furnace (EAF) provides an appropriate method to examine energy efficiency and identify energy saving potentials. However, the EAF energy balance is complex due to the combined input of electrical energy and chemical energy resulting from natural gas (NG) combustion and oxidation reactions in the steel melt. In addition, furnace off-gas measurements and slag analysis are necessary to reliably determine energy sinks. In this paper 70 energy balances and energy efficiencies from multiple EAFs are presented, including data calculated from plant measurements and compiled from the literature. Potential errors that can be incorporated in these calculations are also highlighted. The total energy requirement of these modern EAFs analysed ranged from 510 to 880 kWh/t, with energy efficiency values (η = ΔHSteel/ETotal) of between 40% and 75%. Furthermore, the focus was placed on the total energy related CO2 emissions of EAF processes comprising NG combustion and electrical energy input. By assessing multiple EAF energy balances, a significant correlation between the total energy requirement and energy related specific CO2 emissions was not evident. Whilst the specific consumption of NG in the EAF only had a minor impact on the EAF energy efficiency, it decreased the specific electrical energy requirement and increased EAF productivity where transformer power was restricted. The analysis also demonstrated that complementing and substituting electrical energy with NG was beneficial in reducing the total energy related CO2 emissions when a certain level of substitution efficiency was achieved. Therefore, the appropriate use of NG burners in modern EAFs can result in an increased EAF energy intensity, whilst the total energy related CO2 emissions remain constant or are even decreased.  相似文献   

9.
In the current study, the energy and exergy efficiencies of three hydrogen production systems from ammonia decomposition using dielectric barrier discharge plasma (DBD) were comparatively evaluated. The hydrogen gas was separated in a cylindrical plasma membrane reactor (PMR) using the Pd–Cu40% membrane with a thickness of 20 μm. The pre-catalytic reactor (CR) is added to the second system (CR-PMR), additionally, the CR is filled with the catalytic material type of 2%Ru/Al2O3 and the CR temperature is raised to 450 °C. Furthermore, the zeolite material type of SA-600 A was added to the PMR in the third H2 production system (PMR) to enhance the hydrogen permeation through the Pd–Cu membrane. The hydrogen production rate was enhanced by combining the plasma and zeolite material in the third system (CR-CPMR). Moreover, the maximum obtained hydrogen production rates were 2.66, 81.6, and 96.6% in PMR, CR-PMR, and CR-CPMR or catalytic PMR, respectively. Also, it was observed that the energy efficiency increased by adding the CR to the system, while, the exergy efficiency values of all ammonia decomposition systems were still low due to the effect of system irreversibility. Additionally, the maximum energy efficiencies values were 0.8, 16.1, 44.1%, while the maximum exergy efficiencies values were 0.156, 4.91, and 6.344% for PMR, CR-PMR, and CR-CPMR, respectively. The exergy destruction rate of all NH3 decomposition systems was still high although using the modified systems. The depletion factor is enhanced with the feeding ammonia flow rate increased while the sustainability index decreased at the same flow rates. Moreover, it was seen that the depletion factor results of PMR only were higher than other systems due to the exergy destruction rate was high.  相似文献   

10.
In this study, we investigated a two-phase process of combining the dark- and photo-fermentation methods to reutilize the residual solution derived from dark fermentation and increase the hydrogen yield (HY) from glucose. In dark fermentation, an orthogonal experimental design was used to optimize the culture medium for Clostridium butyricum (C. butyricum). The optimal culture medium composition was determined as glucose 20 g/l, NaCl 3 g/l, MgCl2 0.1 g/l, FeCl2 0.1 g/l, K2HPO4 2.5 g/l, l-cysteine 0.5 g/l, vitamin solution 10 ml/l, and trace element solution 10 ml/l. In this method, the maximum HY increased from 1.59 to 1.72 mol H2/mol glucose and hydrogen production rate (HPR) from 86.8 to 100 ml H2/l/h. The metabolite byproducts from dark fermentation, mostly containing acetate and butyrate, were inoculated with Rhodopseudomonas palustris (R. palustris) and reutilized to produce hydrogen in photo-fermentation. In photo-fermentation, the maximum HY was 4.16 mol H2/mol glucose, and the maximum removal ratios of acetate and butyrate were 92.3% and 99.8%, respectively. Combining dark fermentation and photo-fermentation caused a dramatic increase of HY from 1.59 to 5.48 mol H2/mol glucose. The conversion efficiency of heat value in dark fermentation surged from 13.3% to 46.0% in the two-phase system.  相似文献   

11.
The structure and catalytic properties of nickel catalysts supported on multi-wall carbon nanotubes (MWCNTs) and on three different types of activated carbon (AC) were studied. The surface areas of AC carriers were defining the size of supported nickel particles. Large surface area of AC led to small Ni nanoparticles and high Ni dispersion. Turnover frequency (TOFNH3) of ammonia decomposition decreased with decreasing of Ni particle size. The highest degree of ammonia conversion was observed on Ni/AC prepared by using of AC support with largest surface area. The catalytic activity of Ni/MWCNTs was much higher than catalytic activity of the studied Ni/AC catalysts. The synergic nickel-support interaction and special electronic conductivity properties of MWCNTs were responsible for high catalytic activity of Ni/MWCNTs catalyst.  相似文献   

12.
The novel paradigm of distributed energy production foresees the production of hydrogen from methane and biomasses in small plants, which may take advantage from membrane-based processes. By means of a modeling approach, this paper compares the energy efficiency of two membrane-based processes to produce H2 from methane steam reforming. The two-step process (TS) envisages a high temperature classical reactor and a following WGS stage in a membrane reactor, while the alternative process uses a simple packed-bed membrane reactor (MR). Both processes show a general increase of H2 production and energy efficiency with the pressure and a maximum energy efficiency for S/C of 4, while the increase of the space velocity reduces the performances of the MR. The results show that the TS process performs better than the studied MR and that the maximum energy efficiency of both processes is between 30 and 40%. A comparison with the literature shows that the TS process may achieve similar performances respect to an intensified MR.  相似文献   

13.
We report a techno-economic modelling for the flexible production of hydrogen and ammonia from water and optimally combined solar and wind energy. We use hourly data in four locations with world-class solar in the Atacama desert and wind in Patagonia steppes. We find that hybridization of wind and solar can reduce hydrogen production costs by a few percents, when the effect of increasing the load factor on the electrolyser overweighs the electricity cost increase. For ammonia production, the gains by hybridization can be substantially larger, because it reduces the power variability, which is costly, due to the need for intermediate storage of hydrogen between the flexible electrolyser and the less flexible ammonia synthesis unit. Our modelling reveals the crucial role in the synthesis of flexibility, which cuts the cost of variability, especially for the more variable wind power. Our estimated near-term production costs for green hydrogen, around 2 USD/kg, and green ammonia, below 500 USD/t, are encouragingly close to competitiveness against fossil-fuel alternatives.  相似文献   

14.
In this study, the influence of distribution of ammonia feed along the height of a fixed bed membrane reactor (FBMR) for ammonia decomposition to hydrogen is investigated to understand the leverage of this approach. A rigorous heterogeneous model with verified kinetics is implemented to simulate the reactor. The simulation results indicate that the application of a distributed ammonia feed with equal distribution of injection points resulted in a 17.45% improvement in hydrogen production rate at a low temperature of 800.0 K over a FBMR without feed distribution. In the parameter space of this study, it has been shown that the ammonia conversion is sensitive to the number of distribution points and has an optimal value. It is found that the implication of the optimum number of injection points can substantially reduce the length of the reactor by 75.0% to achieve 100.0% ammonia conversion. The hydrogen reversal permeation phenomenon is observed at a low pressure and the upper part of the reactor. A novel configuration of a FBR and a FBMR with feed distribution is proposed for efficient production of ultra-pure hydrogen at a relatively low pressure. The critical reactor length ratio has been provided for this configuration.  相似文献   

15.
Catalytic ammonia (NH3) decomposition has been identified as a COx-free, sustainable hydrogen production method for fuel cell applications. In this study, the performance of plasma–catalyst-based NH3 decomposition over ruthenium (Ru/Al2O3) and soda glass (SiO2) catalytic materials at atmospheric pressure and ambient temperature was investigated. NH3 decomposition reactions were conducted in a dielectric barrier discharge plasma plate-type reactor. NH3 was fed into the plate catalytic microreactor at flow rates of 0.1–1 L/min and plasma voltages of 12–18 kV. Compared to plasma NH3 decomposition without a catalyst, plasma–catalyst-based NH3 decomposition showed a significant enhancement of the hydrogen production rate and energy efficiency. Furthermore, the hydrogen concentration results obtained over the Ru/Al2O3 catalyst were higher than those over the SiO2 catalyst because Ru/Al2O3 possesses good electronic properties and exhibits high sensitivity to NH3 decomposition. In addition, the resulting plasma heat enhanced the activation of the catalytic material, subsequently leading to an increase in the hydrogen production rate from NH3. The maximum conversion rates were 85.65% and 84.39% for Ru/Al2O3 and SiO2, respectively. Moreover, the energy efficiency of NH3 decomposition over the Ru-based catalyst material was higher than that over the SiO2 material. The presence of the catalyst active sites and plasma enhanced the mean electron energy, which could enhance the dissociation of NH3. It can be concluded that the SiO2 material can be utilised as a catalyst and that its combination with plasma accelerates the decomposition process of NH3 and incurs a lower cost compared to Ru materials.  相似文献   

16.
We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on “conservation,” with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of “intensive” versus “extensive” variables (i.e., energy efficiency versus energy consumption) and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption, as well as efficiency. We introduce the concept of “progressive efficiency,” with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption, as well as efficiency, offers a path for energy experts, policymakers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency, in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.
Hans-Paul SideriusEmail:
  相似文献   

17.
Conversion of CH4 and CO2 into synthesis gas has been performed in a rotating gliding arc discharge (RGAD) reactor driven by a high frequency AC power. Influence of electrode structure and gas parameters on RGAD plasma CH4CO2 conversion and energy efficiency of the process was investigated. Summit angle of internal electrode is an important parameter affecting the stability of the reaction. Internal electrode with summit angle of 45° is more favorable for CH4 and CO2 conversions. The energy efficiencies increase by 25% and 22% than those in RGAD involving internal electrode with summit angle of 30° and 60°, respectively. Longer external electrode improves the arc extension leading to an increase of 17% and 25% in CO2 and CH4 conversion at the applied voltage of 11 kV. Feed flow rate has significant impact on the CO2 and CH4 conversion, while low CO2/CH4 ratio inhibits rotating gliding arc extension due to carbon-black deposition. A large number of graphene quantum dots have been observed to generate on the lamellar ley of the carbon-black. Maximum energy efficiency of 3.9 mmol/kJ is achieved at feed flow rate of 3 L/min and CO2/CH4 ratio of 3:2 in this work.  相似文献   

18.
Decomposition of ammonia derived from source-separated human urine is a renewable approach for hydrogen production. Life cycle net energy analysis and global warming impact of scaled-up hydrogen production via this technique are studied in this paper. Ammonia decomposition processes, including fixed-bed reactors with Ru/Al2O3 and Ni/Al2O3 as catalyst options are simulated using the Aspen Plus software, and the results are compared with published data for validation. The life cycle net energy indicators are assessed for three scenarios of ammonia generation: conventional air stripping, microbial fuel cell, and electrochemical cell methods at a unit basis of 1000 kg of H2 production. Results show that the microbial fuel cell process is more energy-efficient and emits lower greenhouse gases. The net energy ratio of the microbial fuel cell method is 1.38, and 1.12, for Ru/Al2O3 and Ni/Al2O3, respectively. A comparative assessment of ammonia generation and decomposition options for environmentally-benign hydrogen production is discussed.  相似文献   

19.
A new integrated energy system employing the cement slag waste heat is uniquely proposed in this study. The core focus of the proposed system is to generate clean hydrogen thermochemically and convert it into ammonia. The designed system consists of the copper–chlorine (Cu–Cl) cycle, a cryogenic air separation unit and a steam Rankine cycle while the useful commodities produced by the proposed system are hydrogen, ammonia, oxygen, hot water and electricity. A CO2 emission analysis is also conducted to calculate the emissions which can be avoided by recovering this waste heat. The Aspen Plus simulation software is utilized to model and simulate the proposed integrated system. A thermochemical water splitting process is incorporated into the system for hydrogen production. The cryogenic air separation unit is integrated in order to separate nitrogen from the air. This proposed system also reduces the environmental effects of the flue gas emitted by the cement industry. Multiple parametric studies are performed to investigate the system performance by varying operating conditions and state properties. The energy analysis is implemented on each component of the designed system. The overall energy efficiency of the system is concluded as 30.1%. The amount of CO2 emissions which can be avoided by utilizing this waste heat is 29.64 ktonne/5 years.  相似文献   

20.
In this study energy use pattern for canola production in Golestan province of Iran was studied and the degrees of technical and scale efficiency of producers were analyzed using a non-parametric data envelopment analysis technique. The study also helped to identify the wasteful uses of energy by inefficient farmers and to suggest reasonable savings in energy uses from different inputs. Further, the effect of optimization of energy on energy ratio and energy productivity was investigated. Data used in this study were obtained from 130 randomly selected canola farms from Golestan, the most important center of canola production in Iran. The inputs were human labor, diesel, machinery, fertilizers, chemicals, water for irrigation, seeds and electrical energies; while the yield value of canola was considered as output. The results revealed that, the total energy of 17,786 MJ ha−1 was consumed for canola production; about 15% of farmers were found to be technically efficient and the mean efficiency of farmers was found to be 0.74 and 0.88 under constant and variable returns to scale assumptions, respectively. The results also suggested that, on average, a potential 9.5% (1696 MJ ha−1) reduction in total energy input could be achieved provided that all farmers operated efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号