共查询到20条相似文献,搜索用时 0 毫秒
1.
A hydrogen economy, the long-term goal of visionary nations, has the potential to provide energy security, along with environmental and economic benefits. The concept of a hydrogen energy economy was first conceived at The Hydrogen Economy Miami Energy (THEME) Conference, held in March 1974 in Miami, Florida, where the International Association for Hydrogen Energy was established. Forty years later, advances in hydrogen technologies have led the world's most developed countries to invest extensively in preparation for a future hydrogen-based economy. However, the transition from a conventional petroleum-based energy economy to a hydrogen economy involves many uncertainties regarding concerns such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, hydrogen safety issues, and the response of carbon-based fuel markets. This paper presents an assessment of the economic impact of hydrogen energy on the transportation and energy use sectors of Nigeria, along with implications for Greenhouse Gas (GHG) emissions. The analysis uses the Long range Energy Alternatives Planning (LEAP) technology database and model to simultaneously consider the impact of alternative and conventional technologies and fuels on these sectors. 相似文献
2.
The need for large-scale storage, when the energy source is subject to periods of low-energy generation, as it would be in a direct solar or wind energy system, could be the factor which justifies the choice of hydrogen, rather than electricity, as the principal energy carrier. It could also be the ‘Achilles heel’ of a solar-based sustainable energy system, tipping the choice to a nuclear breeder system. 相似文献
3.
Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R&D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R&D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised. 相似文献
4.
Dries HaeseldonckxWilliam D’haeseleer 《International Journal of Hydrogen Energy》2011,36(8):4636-4652
In many visions and roadmaps, there is a broad agreement that fuel cells - both for stationary and mobile applications - are the key technology to allow the development of a hydrogen infrastructure. Furthermore, this development is generally thought to be based on a gradual, decentralised evolution. Nevertheless, in this paper it is argued that, taking into account the entire hydrogen chain (production, transport, storage, distribution and end-use), this decentralised fuel-cell based philosophy shows some serious flaws.Therefore, a new hydrogen-transition approach was pushed forward: mixing in of hydrogen into the natural-gas bulk. Using Flanders - the Northern part of Belgium - as a case study, the development of a transitory hydrogen infrastructure has been studied, taking into account the entire hydrogen chain and its dynamics, from production to end use.In a next step, this transition is being quantified. An optimisation model has been developed using Matlab and the commercial solvers GAMS and CPLEX. Following a mixed-integer linear-programming approach, this model is able to determine the economically optimal hydrogen-production mix and operational behaviour of each hydrogen-production plant separately. The model then allows gaining valuable insights in the importance of storage and the influence of fuel prices and carbon taxes with regard to the development of an early hydrogen economy. 相似文献
5.
The focus of the paper concerns the current discussion on the contribution of the hydrogen economy to a “sustainable energy system”. It considers whether advantages for the environmental situation and energy carrier supply can be expected from the already visible future characteristics of hydrogen as a new secondary energy carrier. 相似文献
6.
The residential sector accounts for about a third of the total world energy consumption. Energy efficiency, Renewable Energy Sources and Hydrogen can play an important role in reducing the consumptions and the emissions and improving the energy security if integrated (Efficiency, Res, Hydrogen) systems are developed and experimented. The paper analyzes a real residential 100 square meters house, where energy efficiency measures and RES technologies have been applied, sizing a hydrogen system (electrolyzer, metal hydrides and fuel cell) for power backup, taking into consideration its dynamic behavior, experimentally determined. The technologies used are already available in the market and, except hydrogen technologies, sufficiently mature. Through energy efficiency technologies (insulation, absorbers, etc), the maximum electrical and thermal power needed decreases from 4.4 kWe to 1.7 kWe (annual consumption from 5000 kWh to 1200 kWh) and from 5.2 kWt to 1.6 kWt (annual consumption from 14,600 kWh to 4500 kWh) respectively. With these reduced values it has been possible to supply the consumptions entirely by small photovoltaic and solar thermal plants (less than 10 m2 each). The hydrogen backup even if remains the most expensive (versus traditional batteries and gasoline generator), satisfying all the electric needs for one day, increases the security and allows net metering. Moreover the low-pressure hydrogen storage system through metal hydrides guarantees system safety too. Finally the system modularity can also satisfy higher energy production. 相似文献
7.
R.K. Ahluwalia T.Q. Hua J.-K. Peng S. Lasher K. McKenney J. Sinha M. Gardiner 《International Journal of Hydrogen Energy》2010
On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H2 to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2–4 and 1.6–2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials. 相似文献
8.
The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H2 mass% where water can be recycled from PEM fuel cells or 8.33% H2 mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H2/m3. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H2/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research & development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. 相似文献
9.
This study analyzes the impact of the introduction of hydrogen as fuel in the road transportation sector of Korea. Since this sector is completely dependent on petroleum and alternative technologies such as fuel cell vehicles, hydrogen is one alternative fuel that could meet the challenges that Korea is facing due to rising oil prices. This study uses a scenarios-based energy economic model including the hydrogen path way as a sub-energy system to explore the energy system of Korea through 2044. This study also constructs six scenarios consisting of three government policies concerning carbon dioxide reduction and two oil price scenarios in order to assess the impact on hydrogen as fuel in the road transportation sector. The results of this study show that in a particular case (high Btu tax and oil prices) the share of hydrogen would reach 76% of the road transportation sector, and hydrogen would be produced mainly from renewable and nuclear resources via electrolysis facilities. It is also revealed that hydrogen is effective at reducing carbon dioxide, improving energy efficiency and contributing to the energy security of Korea. 相似文献
10.
Resilience is the capacity of complex system to be recovered after a sudden change of the indicator. Energy resilience is the ability of energy system to provide and maintain an acceptable level of service in the face of various challenges to normal operation. Loss of resilience can cause loss of valuable energy system services, and may even lead to rapid transitions or shifts into qualitatively different situations and configurations, 相似文献
11.
Francisco Díaz-González Andreas Sumper Oriol Gomis-Bellmunt Roberto Villafáfila-Robles 《Renewable & Sustainable Energy Reviews》2012,16(4):2154-2171
Due to the stochastic nature of wind, electric power generated by wind turbines is highly erratic and may affect both the power quality and the planning of power systems. Energy Storage Systems (ESSs) may play an important role in wind power applications by controlling wind power plant output and providing ancillary services to the power system and therefore, enabling an increased penetration of wind power in the system. This article deals with the review of several energy storage technologies for wind power applications. The main objectives of the article are the introduction of the operating principles, as well as the presentation of the main characteristics of energy storage technologies suitable for stationary applications, and the definition and discussion of potential ESS applications in wind power, according to an extensive literature review. 相似文献
12.
L. Boon-Brett J. Bousek G. Black P. Moretto P. Castello T. Hübert U. Banach 《International Journal of Hydrogen Energy》2010
A market survey has been performed of commercially available hydrogen safety sensors, resulting in a total sample size of 53 sensors from 21 manufacturers. The technical specifications, as provided by the manufacturer, have been collated and are displayed herein as a function of sensor working principle. These specifications comprise measuring range, response and recovery times, ambient temperature, pressure and relative humidity, power consumption and lifetime. These are then compared against known performance targets for both automotive and stationary applications in order to establish in how far current technology satisfies current requirements of sensor end users. Gaps in the performance of hydrogen sensing technologies are thus identified and areas recommended for future research and development. 相似文献
13.
Frano Barbir 《Energy》2009
Unlike the present energy system based on fossil fuels, an energy system based on renewable energy sources with hydrogen and electricity as energy carriers would be sustainable. However, the renewable energy sources in general have less emergy than the fossil fuels, and their carriers have lower net emergy. Because of that they would not be able to support continuous economic growth, and would eventually result in some kind of a steady-state economy. An early transition to renewable energy sources may prove to be beneficial in the long term, i.e., it may result in a steady state at a higher level than in the case of a transition that starts later. Once the economy starts declining it will not be able to afford transition to a more expensive energy system, and transition would only accelerate the decline. Similarly, if a transition is too fast it may weaken and drain economy too much and may result in a lower steady state. If a transition is too slow, global economy may be weakened by the problems related to utilization of fossil fuels (such as global warming and its consequences) before transition is completed and the result again would be a lower steady state. Therefore, there must be an optimal transition rate; however, its determination would require very complex models and constant monitoring and adjustment of parameters. 相似文献
14.
Over the past few years, hydrogen has been recognized as a suitable substitute for present vehicular fuels. This paper covers the economic analysis of one of the most promising hydrogen production methods—using wind energy for producing hydrogen through electrolysis of seawater—with a concentration on the Indian transport sector. The analysis provides insights about several questions such as the advantages of offshore plants over coastal installations, economics of large wind-machine clusters, and comparison of cost of producing hydrogen with competing gasoline. Robustness of results has been checked by developing several scenarios such as fast/slow learning rates for wind systems for determining future trends. Results of this analysis show that use of hydrogen for transportation is not likely to be attractive before 2012, and that too with considerable learning in wind, electrolyzer and hydrogen storage technology. 相似文献
15.
Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier. 相似文献
16.
Boris P. Tarasov Pavel V. Fursikov Alexey A. Volodin Mikhail S. Bocharnikov Yustinas Ya Shimkus Aleksey M. Kashin Volodymyr A. Yartys Stanford Chidziva Sivakumar Pasupathi Mykhaylo V. Lototskyy 《International Journal of Hydrogen Energy》2021,46(25):13647-13657
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems. 相似文献
17.
In recent years, a number of initiatives have been supported in Europe in the hydrogen energy sector. Communities can play an important role in the adoption process of these emerging technologies: supporting pre-commercial deployment, building public acceptance, and promoting innovation clusters, all of which lay the foundations for more widespread and sustained technology deployment. Participation by communities is hinged on the perceived contribution of technology adoption to community socio-economic and energy related goals, such as, climate change mitigation, air quality improvement, creation of new industries and businesses, exploitation of abundant renewable resources, and meeting growing energy needs. Hydrogen uptake in communities therefore stands to benefit development of the hydrogen energy sector and the communities themselves. This paper presents a methodology for evaluating the potential for successful large-scale hydrogen and fuel cell technology adoption—beyond demonstration projects—within defined community frameworks. This methodology can be a valuable tool, for community decision-makers and industry stakeholders alike, to evaluate and identify opportunities for large-scale hydrogen technology adoption. Results of applying the methodology are presented for three community types: islands, cities and regions. The work in this paper reflects work done within the frame of the European Commission-funded ‘Roads2HyCom’ project, Work Package 3.1 相似文献
18.
Angelina F. Ambrose Abul Quasem Al-Amin Rajah Rasiah R. Saidur Nowshad Amin 《International Journal of Hydrogen Energy》2017,42(14):9125-9134
Sustainable economic development through adoption of hydrogen pathway is expected to simultaneously solve the double challenge of environment and energy security. The momentum of current research in this area is focused on optimizing the potential benefits in transportation sector through introduction of hydrogen fuel cell vehicles (FCVs). However the rapid adoption of critical cleaner energy system is still problematic in developing countries especially in transportation. This article sheds light on the Malaysian case by highlighting related issues and obstacles, and discusses the future prospects of hydrogen FCV. We argue that innovation and technological advancement of hydrogen FCV is important and ready for introduction in Malaysia; however it is not sufficient in explaining the conditions that will allow for rapid transition in Malaysia. The main message of this article is that hydrogen FCV in Malaysia can be expected and is possible when there is a thorough understanding of energy security issues, where energy policy integration for economic development and environmental objectives are achieved at the same time. The understanding of specific problems from the standpoint of developing country is crucial in encouraging government policies to induce development of hydrogen FCV. 相似文献
19.
Hirokazu Kojima Hideyuki Matsumoto Taku Tsujimura 《International Journal of Hydrogen Energy》2017,42(19):13444-13453
The world's largest class hydrogen energy carrier production, storage, and utilization system has been operated in order to obtain basic data for practical use of the system using renewable energy. In this system, an alkaline water electrolyzer is combined with hydrogenation reactors to produce methylcyclohexane (MCH). Since electrolyzer behavior directly affects hydrogenation reaction, behaviors of the 150 kW class water electrolyzer against fluctuating electricity inputs were experimentally investigated. The cell stack voltage and hydrogen flow rate changed following temporal changes of the input current, whereas the temperature response was slow due to the large heat capacity of the system. Hydrogenation reactors performance using the hydrogen from the electrolyzer are reported. Then, based on the experiment data, a numerical simulation model for the electrolyzer was developed, which predicts the experimental result using fluctuating electricity very well. Furthermore, using the simulator, the heat utilization from the hydrogenation reaction for the electrolyzer warm-up process was investigated. 相似文献
20.
T.Q. Hua R.K. AhluwaliaJ.-K. Peng M. KromerS. Lasher K. McKenneyK. Law J. Sinha 《International Journal of Hydrogen Energy》2011,36(4):3037-3049
The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar (∼5000 psi) and 700 bar (∼10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. 相似文献