首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg-based materials as potential hydrogen storage candidates, however, are suffering from sluggish kinetics during absorption and desorption processes. Here in this work, embedding Mg particles on few-layer graphene nanosheets (FLG) via dielectric barrier discharge plasma (DBDP) assisted milling was synthesized to improve hydrogen storage properties of Mg particles. The SEM observation demonstrates that Mg particles are distributed uniformly on the surface of the graphite layer in the Mg@FLG composite. The obtained Mg-based composite (Mg@FLG) shows a hydrogen storage capacity of ~5 wt%. From the isothermal dehydrogenation kinetic curves, the composite could desorb ~4.5 wt% hydrogen within 25 min at 300 °C. Compared with pure Mg, the dehydriding kinetics of the hydrogenated Mg@FLG composite is significantly elevated, showing an activation energy of 155 J/(mol·K). In addition, the dehydrogenation peak temperature of the Mg@FLG decreases dramatically from 431 to 329 °C for MgH2. This work implies a promising composite formation technique in Mg-based materials to enhance hydrogen storage kinetics.  相似文献   

2.
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2, nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.  相似文献   

3.
MgH2 is one of the most attractive candidates for on-board H2 storage. However, the practical application of MgH2 has not been achieved due to its slow hydrogenation/dehydrogenation kinetics and high thermodynamic stability. Many strategies have been adopted to improve the hydrogen storage properties of Mg-based materials, including modifying microstructure by ball milling, alloying with other elements, doping with catalysts, and nanosizing. To further improve the hydrogen storage properties, the nanostructured Mg is combined with other materials to form nanocomposite. Herein, we review the recent development of the Mg-based nanocomposites produced by hydrogen plasma-metal reaction (HPMR), rapid solidification (RS) technique, and other approaches. These nanocomposites effectively enhance the sorption kinetics of Mg by facilitating hydrogen dissociation and diffusion, and prevent particle sintering and grain growth of Mg during hydrogenation/dehydrogenation process.  相似文献   

4.
Thermo-chemical energy storage based on metal hydrides has gained tremendous interest in solar heat storage applications such as concentrated solar power systems (CSP) and parabolic troughs. In such systems, two metal hydride beds are connected and operating in an alternative way as energy storage or hydrogen storage. However, the selection of metal hydrides is essential for a smooth operation of these CSP systems in terms of energy storage efficiency and density. In this study, thermal energy storage systems using metal hydrides are modeled and analyzed in detail using first law of thermodynamics. For these purpose, four conventional metal hydrides are selected namely LaNi5, Mg, Mg2Ni and Mg2FeH6. The comparison of performance is made in terms of volumetric energy storage and energy storage efficiency. The effects of operating conditions (temperature, hydrogen pressure and heat transfer fluid mass flow rates) and reactor design on the aforementioned performance metrics are studied and discussed in detail. The preliminary results showed that Mg-based hydrides store energy ranging from 1.3 to 2.4 GJ m?3 while the energy storage can be as low as 30% due to their slow intrinsic kinetics. On the other hand, coupling Mg-based hydrides with LaNi5 allow us to recover heat at a useful temperature above 330 K with low energy density ca.500 MJ m?3 provided suitable operating conditions are selected. The results of this study will be helpful to screen out all potentially viable hydrides materials for heat storage applications.  相似文献   

5.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   

6.
Hydrogen storage in solids of hydrides is advantageous in comparison to gaseous or liquid storage. Magnesium based materials are being studies for solid-state hydrogen storage due to their advantages of high volumetric and gravimetric hydrogen storage capacity. However, unfavorable thermodynamic and kinetic barriers hinder its practical application. In this work, we presented that kinetics of Mg-based composites were significantly improved during high energy ball milling in presence of various types of carbon, including plasma carbon produced by plasma-reforming of hydrocarbons, activated carbon, and carbon nanotubes. The improvement of the kinetics and de-/re-hydrogenation performance of MgH2 and TiC-catalysed MgH2 by introduction of carbon are strongly dependent on the milling time, amount of carbon and carbon structure. The lowest dehydrogenation temperature was observed at 180 °C by the plasma carbon–modified MgH2/TiC. We found that nanoconfinement of carbon structures stabilised Mg-based nanocomposites and hinders the nanoparticles growth and agglomeration. Plasma carbon was found to show better effects than the other two carbon structures because the plasma carbon contained both few layer graphene sheets that served as an active dispersion matrix and amorphous activated carbons that promoted the spill-over effect of TiC catalysed MgH2. The strategy in enhancing the kinetics and thermodynamics of Mg-based composites is leading to a better design of metal hydride composites for hydrogen storage.  相似文献   

7.
Magnesium hydride is considered as a promising solid-state hydrogen storage material due to its high hydrogen capacity. How to improve hydrogen desorption kinetics of MgH2 is one of key issues for its practical applications. In this study, we synthesize a Mg–Ni–TiS2 composite through a solution-based synthetic strategy. In the as-prepared composite, the co-precipitated Mg and Ni nanoparticles are highly dispersed on TiS2 nanosheets. As a result, the activation energy for hydrogen desorption decreases to 79.4 kJ mol−1. Meanwhile, the capacity retention rate is kept at the level of 98% and only slight kinetic deterioration is caused after fifty hydrogenation-dehydrogenation cycles. Further investigation indicates that the superior hydrogen desorption kinetics is attributed to the synergistically catalytic effect of the in situ formed Mg2NiH4 and TiH2, and the remained TiS2. The excellent cycle stability is related not only to the inhibition effect of the secondary phases on powder agglomeration and crystallite growth of Mg and MgH2 but also to the prevention effect of MgS and TiS2 on redistribution of catalytic Mg2NiH4 and TiH2 nanoparticles during cycling. This work introduces a feasible approach to develop Mg-based hydrogen storage materials.  相似文献   

8.
Mg-based materials have been widely researched for hydrogen storage development due to the low price of Mg, abundant resources of Mg element in the earth's crust and the high hydrogen capacity (ca. 7.7 mass% for MgH2). However, the challenges of poor kinetics, unsuitable thermodynamic properties, large volume change during hydrogen sorption cycles have greatly hindered the practical applications. Here in this review, our recent achievements of a new research direction on Mg-based metastable nano alloys with a Body-Centered Cubic (BCC) lattice structure are summarized. Different with other metals/alloys/complex hydrides etc. which involve significant lattice structure and volume change from hydrogen introduction and release, one unique nature of this kind of metastable nano alloys is that the lattice structure does not change obviously with hydrogen absorption and desorption, which brings interesting phenomenon in microstructure properties and hydrogen storage performances (outstanding kinetics at low temperature and super high hydrogen capacity potential). The synthesis results, morphology and microstructure characterization, formation evolution mechanisms, hydrogen storage performances and geometrical effect of these metastable nano alloys are discussed. The nanostructure, fresh surface from ball milling process and fast hydrogen diffusion rate in BCC lattice structure, as well as the unique nature of maintaining original BCC metal lattice during hydrogenation result in outstanding hydrogen storage performances for Mg-based metastable nano alloys. This work may open a new sight to develop new generation hydrogen storage materials.  相似文献   

9.
Mg-based materials are thought to be promising candidates for future hydrogen storage applications due to the low cost, abundant resources and large hydrogen storage capacity. However, they suffer from the challenges of sluggish kinetics and large volume change after hydriding/dehydriding (H/D) process. In order to address the problems, we successfully synthesized the Mg-based Body-Centered Cubic (BCC) metastable nano alloys with much improved kinetics while almost no obvious structure change after H/D process. In this work, the obtained Mg55Co45 metastable alloy with BCC structure can reach a hydrogen storage capacity of 3.24 wt% (hydrogen per metal or H/M = 1.28, H/Mg = 2.33) at −15 °C and this absorption temperature in Mg-based BCC structure is the lowest temperature reported for Mg-based materials to absorb hydrogen. Importantly, the BCC structure is maintained without obvious metal lattice change after H/D process. Nevertheless, the potential uptake of about 20 wt% theoretical hydrogen capacity (H/M = 9) for this unique BCC structure cannot be reached up to now. Herein, we discuss the mechanism from the geometrical effect aspect to figure out the difference between the experimental hydrogen storage capacity (H/M = 1.28) and the theoretical one (H/M = 9).  相似文献   

10.
Hydrogen storage nanocomposites prepared by high energy reactive ball milling of magnesium and vanadium alloys in hydrogen (HRBM) are characterised by exceptionally fast hydrogenation rates and a significantly decreased hydride decomposition temperature. Replacement of vanadium in these materials with vanadium-rich Ferrovanadium (FeV, V80Fe20) is very cost efficient and is suggested as a durable way towards large scale applications of Mg-based hydrogen storage materials. The current work presents the results of the experimental study of Mg–(FeV) hydrogen storage nanocomposites prepared by HRBM of Mg powder and FeV (0–50 mol.%). The additives of FeV were shown to improve hydrogen sorption performance of Mg including facilitation of the hydrogenation during the HRBM and improvements of the dehydrogenation/re-hydrogenation kinetics. The improvements resemble the behaviour of pure vanadium metal, and the Mg–(FeV) nanocomposites exhibited a good stability of the hydrogen sorption performance during hydrogen absorption – desorption cycling at T = 350 °C caused by a stability of the cycling performance of the nanostructured FeV acting as a catalyst. Further improvement of the cycle stability including the increase of the reversible hydrogen storage capacity and acceleration of H2 absorption kinetics during the cycling was observed for the composites containing carbon additives (activated carbon, graphite or multi-walled carbon nanotubes; 5 wt%), with the best performance achieved for activated carbon.  相似文献   

11.
Magnesium hydrides (MgH2) have attracted extensive attention as solid-state H2 storage, owing to their low cost, abundance, excellent reversibility, and high H2 storage capacity. This review comprehensively explores the synthesis and performance of Mg-based alloys. Several factors affecting their hydrogen storage performance were also reviewed. The metals addition led to destabilization of Mg–H bonds to boost the dehydrogenation process. A unique morphology could provide more available active sites for the dissociation/recombination of H2 and allow the activation energy reduction. Also, an appropriate support prevent the agglomeration of Mg particles, hence, sustains their nanosize particles. Moreover, the perspective of avenues for future research presented in this review is expected to act as a guide for the development of novel Mg-based H2 storage systems. New morphological shape of catalysts, more unexplored and highly potential waste materials, and numerous synthesis procedures should be explored to further enhance the H2 storage of Mg-based alloys.  相似文献   

12.
In the last one decade hydrogen has attracted worldwide interest as an energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and applications of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel and richest in energy per unit mass. It will provide, Cheap Electricity, Cook Food, Drive Car, Run Factories, Jet Planes, Hydrogen Village and for all our domestic energy requirements. In short hydrogen shows the solution and also allows the progressive and non-traumatic transition of today's energy sources, towards feasible safe reliable and complete sustainable energy chains. The present article deals with the hydrogen storage in metal hydrides with particular interest in Mg as it has potential to become one of the most promising storage materials. Many metals combine chemically with Hydrogen to form a class of compounds known as Hydrides. These hydrides can discharge hydrogen as and when needed by raising their temperature or decreasing the external pressure. An optimum hydrogen-storage material is required to have various properties viz. high hydrogen capacity per unit mass and unit volume which determines the amount of available energy, low dissociation temperature, moderate dissociation pressure, low heat of formation in order to minimize the energy necessary for hydrogen release, low heat dissipation during the exothermic hydride formation, reversibility, limited energy loss during charge and discharge of hydrogen, fast kinetics, high stability against O2 and moisture for long cycle life, cyclibility, low cost of recycling and charging infrastructures and high safety. So far the most of hydrogen storage alloys such as LaNi5, TiFe, TiMn2, have hydrogen storage capacities, not more than 2 wt% which is not satisfactory for practical application as per DOE Goal. A group of Mg based hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity upto 7.6 wt% for on board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system as well as by ball milling that introduces defects with improved surface properties. The studies reported promising results, such as improved kinetics and lower desorption temperatures, however, the state of the art materials are still far from meeting the aimed target for their transport applications. Therefore further research work is needed to achieve the goal by improving development on hydrogenation, thermal and cyclic behavior of metal hydrides. In the present article the possibility of commercialization of Mg based alloys has been discussed.  相似文献   

13.
Mg-based hydrogen storage alloys have become a research hotspot in recent years owing to their high hydrogen storage capacity, good reversibility of hydrogen absorption/desorption, low cost, and abundant resources. However, its high thermodynamic stability and slow kinetics limit its application, so the modification of Mg-based hydrogen storage alloys has become the development direction of Mg-based alloys. Transition metals can be used as catalysts for the dehydrogenation of hydrogen storage alloys due to their excellent structural, electrical, and magnetic properties. Graphene, because of its unique sp2 hybrid structure, excellent chemical stability, and a specific surface area of up to 2600 m2/g, can be used as a support for transition metal catalysts. In this paper, the internal mechanism of graphene as a catalyst for the catalysis of Mg-based hydrogen storage alloys was analyzed, and the hydrogen storage properties of graphene-catalyzed Mg-based hydrogen storage alloys were reviewed. The effects of graphene-supported different catalysts (transition metal, transition metal oxides, and transition metal compounds) on the hydrogen storage properties of Mg-based hydrogen storage alloys were also reviewed. The results showed that graphene played the roles of catalysis, co-catalysis, and inhibition of grain aggregation and growth in Mg-based hydrogen storage materials.  相似文献   

14.
Hydrogen storage materials research is entered to a new and exciting period with the advance of the nanocrystalline alloys, which show substantially enhanced absorption/desorption kinetics, even at room temperatures. In this work, hydrogen storage capacities and the electrochemical discharge capacities of the Mg2(Ni, Cu)-, LaNi5-, ZrV2-type nanocrystalline alloys and Mg2Ni/LaNi5-, Mg2Ni/ZrV2-type nanocomposites have been measured. The electronic properties of the Mg2Ni1-xCux, LaNi5 and ZrV2 alloys were calculated. The nanocomposite structure reduced hydriding temperature and enhanced hydrogen storage capacity of Mg-based materials. The nanocomposites (Mg,Mn)2Ni (50 wt%)-La(Ni,Mn,Al,Co)5 (50 wt%) and (Mg,Mn)2Ni (75 wt%)-(Zr,Ti)(V,Cr,Ni)2.4 (25 wt%) materials releases 1.65 wt% and 1.38 wt% hydrogen at 25 °C, respectively. The strong modifications of the electronic structure of the nanocrystalline alloys could significantly influence hydrogenation properties of Mg-based nanocomposities.  相似文献   

15.
Mg attracts much research interest as anode material for Ni-MH batteries thanks to its lightweight, cost-effectiveness and high theoretical capacity (2200 mA h g?1). However, its practical application is tremendously challenged by the poor hydrogen sorption kinetics, passivation from aggressive aqueous electrolytes, and insulating nature of MgH2. Mg-based alloys exhibit enhanced hydrogen sorption kinetics and electrical conductivity, but significant amount of costly transition metal elements are required. In this work, we have, for the first time, utilized non-alloyed but catalyzed Mg as anode for Ni-MH batteries. 5 mol.% TiF3 was added to nanosized Mg for accelerating the hydrogen sorption kinetics. Several strategies for preventing the problematic passivation of Mg have been studied, including protective encapsulation of the electrode and utilizing room-temperature/high-temperature ionic liquids and an alkaline polymer membrane as working electrolyte. Promising electrochemical performance has been achieved in this Mg–TiF3 composite anode based Ni-MH batteries with room for further improvements.  相似文献   

16.
Hydrogen is an ideal energy carrier because of its high chemical energy, environmental friendliness and renewability. In order to realize the safe, efficient and compact hydrogen storage, various solid-state hydrogen storage materials based on the physisorption or chemisorption of hydrogen have been developed over the past decades. Among them, magnesium hydride, MgH2, is identified as one of the most promising candidates due to its high hydrogen storage density, low cost and abundance of Mg element. However, the sluggish kinetics and high thermodynamic stability of MgH2 result in its high operation temperature and low hydrogen sorption rate, impeding its practical application. In this article, the recent progress in catalysis and nanoconfinement effects on the hydrogen storage properties of MgH2 is comprehensively reviewed. In particular, the synergetic roles of catalysis and nanoconfinement in MgH2 are highlighted. Furthermore, the future challenges and prospects of emerging research for MgH2 are discussed. It is suggested that the nonmetal-doped porous carbon materials could be a class of ideal additives to enhance the hydrogen storage properties of MgH2 by the synergetic effects of catalysis and nanoconfinement.  相似文献   

17.
Magnesium hydride (MgH2) is a promising candidate as a hydrogen storage material. However, its hydrogenation kinetics and thermodynamic stability still have room for improvement. Alloying Mg with Al has been shown to reduce the heat of hydrogenation and improve air resistance, whereas graphite helps accelerating hydrogenation kinetics in pure Mg. In this study, the effects of simultaneous Al alloying and graphite addition on the kinetics and air-exposure resistance were investigated on the Mg60Al40 system. The alloys were pulverized through high-energy ball milling (hereinafter HEBM). We tested different conditions of milling energy, added graphite contents, and air exposure times. Structural characterization was conducted via X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). H2 absorption and desorption properties were obtained through volumetry in a Sieverts-type apparatus and Differential Scanning Calorimetry (DSC). The desorption activation energies were calculated using DSC curves through Kissinger analysis. Mg60Al40 with 10 wt% graphite addition showed fast activation kinetics, even after 2 years of air exposure. Graphite addition provided a catalytic effect on ball-milled Mg–Al alloys by improving both absorption and desorption kinetics and lowering the activation energy for desorption from 189 kJ/mol to 134 kJ/mol. The fast kinetics, reduced heat of reaction, and improved air resistance of these materials make them interesting candidates for potential application in hydride-based hydrogen storage tanks.  相似文献   

18.
Experimentally systematical comparisons are carried out in this work to clarify dehydrogenation steps of Mg-based hydrogen storage alloys during the overall desorption process. Different forms of MgH2CeH2.73 composite powders are prepared by high energy ball milling, partial dehydrogenation and annealing. For partially dehydrogenated samples, the desorption temperature and desorption activation energy decrease significantly considering the fact that primary-precipitated metal Mg phase on the surface of MgH2 can act as nucleate precursors. No significant difference in isothermal desorption kinetics is observed for MgH2CeH2.73 powders with different grain sizes. However, particle size reduction facilitates desorption at temperatures below 300 °C. As minor Ni is distributed on the surface, both onset and peak temperatures in thermal desorption decrease for MgH2CeH2.73 composite. The reduced activation energy by Ni addition is comparable to the value caused by partial dehydrogenation. Recombination of hydrogen atoms plays an important role during dehydrogenation. The obtains in this work can be expected to provide guidelines to improve desorption kinetics of Mg-based alloys.  相似文献   

19.
Spark plasma sintering (SPS) is a newly developed material preparation technology and is very suitable for the multi-component and/or dissimilar materials preparation. In this paper, Mg–V77.8Zr7.4Ti7.4Ni7.4, Mg–V38Zr25Ti15Ni22 and Mg–ZrMn2 composites were synthesized by SPS method and their hydrogen storage properties were evaluated. The results showed that with the addition of the second alloys, the hydrogen desorption temperature of pure Mg decreased apparently, with the reversible hydrogen storage capacity increased from nearly 0 of pure Mg to near 95% of its total absorption at 573 K. The hydrogen ab/desorption kinetics were also greatly improved, with the hydrogen absorption mechanism changed from surface reaction of pure Mg to three-dimension diffusion of the composite. TEM observation indicated that a thin transition zone of nanocrystalline Mg was produced at the sintering interface during SPS, which may be responsible for the improvement of hydrogen storage properties of these Mg-based composites.  相似文献   

20.
Mg-based hydrogen-storage materials are regarded as promising hydrogen-storage alloys. However, in practical applications, Mg-based hydrogen-storage materials may be exposed to air or to a low-purity-gas environment with particularly oxygen as impurity. In this paper, the influence of a micro-amount of oxygen or nitrogen on the performance of adsorption/desorption of MgH2 hydrogen-storage material has been studied by placing samples in an argon-filled glove box (at atmospheric pressure) with 1000 ppm oxygen concentration. The hydrogen capacity and adsorption/desorption kinetics were measured by using a high-pressure and high-temperature gas-adsorption analyzer. The samples were characterized by X-ray diffraction. The activation energy for hydrogenation has been determined by means of the Arrhenius equation. It is found that the adsorption/desorption of MgH2 improves significantly by a micro-amount of oxygen, especially at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号