首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flexible DSSCs based on conducting plastic substrates are fabricated using electrodes made of tetrabutoxytitanium (TBOT) mixed with P25 TiO2 nanoparticles at low temperature. To investigate the effects of TBOT on the flexible dye-sensitized solar cells, electrochemical impedance spectroscopy (EIS) is performed in the dark and under illumination conditions. Resistances for electron transport through TiO2, charge-transfer resistance related to the TiO2/redox electrolytes interface recombination, electron transport time and electron lifetime are quantified under different weight ratios of TBOT/P25. Additionally, the photovoltaic characteristics I-V curves and incident photon to current conversion efficiencies (IPCE) of flexible anodes made of different weight ratios of TBOT/P25 are obtained as well. It is found that the electrode under weight ratio 0.17 has the smallest inherent resistance, longest electron transport time and electron lifetime, lowest recombination rate and best performance with conversion efficiency 3.94%. These results indicate that after the weight ratios of TBOT/P25 is optimized, TBOT could enhance the interconnection between the TiO2 particles, improve the conductivity of the electrode and decrease the charge recombination. Above results demonstrate that adding TBOT to TiO2 is an easy and efficient method to improve the performance of the flexible DSSC fabricated at low temperature.  相似文献   

2.
Considering the electronic parameters and chemical characteristics, a synergistic catalytic effect of Fe2O3 along with TiO2 could be achieved for electrochemical reactions if both the oxides are produced in a mixed oxide form. The present study explored the mixed oxide composite viz; Fe2O3–TiO2, synthesized via thermal decomposition method, to increase the catalytic efficiency of Ni–P electrodes, the well known catalytic electrodes for hydrogen evolution reaction in alkaline medium. The incorporation of the Fe2O3–TiO2 mixed oxide into Ni–P matrix substantially reduced overpotential during hydrogen evolution reaction (HER) in 32% NaOH solution. A significant improvement on the electrochemical activity of the Ni–P coated electrodes was achieved as evidenced from the results of Tafel and impedance studies. The incorporation of Fe2O3–TiO2 mixed oxide composite into the Ni–P matrix has improved both metallurgical and electrochemical characteristics and hence its amount of incorporation should be optimum. The electrodes exhibited high stability under dynamic experimental conditions. The role of the composite and the possible mechanism are discussed in this paper.  相似文献   

3.
CuO was introduced into porous TiO2 nanorod through impregnation method. Before the impregnation step, TiO2 nanorod was hydrothermally synthesized from TiO2 powder in aqueous NaOH solution and followed by thermal treatment at 450 °C. The structures and properties of impregnated samples were characterized using various techniques, including XRD, BET, XAS, TEM, and UV-DRS. Their photocatalytic performance on simultaneous hydrogen production from pure water and aqueous methanol solution was also investigated under solar light. It was found that CuO/TiO2 nanorod possessed a high surface area, good photocatalytic property and excellent hydrogen generation activity. Incorporation of Cu ions into the lattice framework of anatase TiO2 nanorod enhanced the efficiency in visible region at 438–730 nm. Moreover, the XAS results showed that some Cu ions formed solid solution in the TiO2 nanorod (CuxT1−xO2). However, the excessive incorporation of Cu ions did not improve any ability of anatase TiO2 nanorod for production of hydrogen from pure water splitting. This could be due to the excessive CuO agglomeration at outside-pores which blocked the sensitization of TiO2 nanorod. Only 1% Cu/TiO2 nanorod was found to be a remarkable and an efficient photocatalyst for hydrogen production under solar light from both pure water and sacrificial methanol splitting. The highest rate of hydrogen production of 139.03 μmol h−1 gcatalyst−1 was found in sacrificial methanol which was 3.24% higher than in pure water.  相似文献   

4.
We demonstrate a general method for the synthesis of biomass-derived hierarchical porous CdS/M/TiO2 (M = Au, Ag, Pt, Pd) ternary heterojunctions for efficient photocatalytic hydrogen evolution. A typical biomass—wood are used as the raw sources while five species of wood (Fir, Ash, White Pine, Lauan and Shiraki) are chosen as templates for the synthesis of hierarchical porous TiO2. The as-obtained products inherited the hierarchical porous features with pores ranging from micrometers to nanometers, with improved photocatalytic hydrogen evolution activity than non-templated counterparts. Noble metals M (M = Pt, Au, Ag, Pd) and CdS are loaded via a two-step photodeposition method to form core (metal)/shell (CdS) structures. The photocatalytic modules—CdS(shell)/metal (core)/TiO2 heterostructures, have demonstrated to increase visible light harvesting significantly and to increase the photocatalytic hydrogen evolution activity. The H2 evolution rates of CdS/Pd/TiO2 ternary heterostructures are about 6.7 times of CdS/TiO2 binary heterojunctions and 4 times higher than Pd/CdS/TiO2 due to the vertical electron transfer process. The design of such system is beneficial for enhanced activity from morphology control and composition adjustment, which would provide some new pathways for the design of promising photocatalytic systems for enhanced performance.  相似文献   

5.
A mesoporous TiO2/WO3 nanohoneycomb at a molar ratio of 3:1 was prepared by sol–gel method for photoelectrochemical splitting of water. In order to create a highly porous structure, the composite TiO2/WO3 with a block copolymer internal template was deposited on the substrate covered with polystyrene (PS) nanospheres. A mesoporous TiO2/WO3 composite nanohoneycomb was obtained after removing the PS spheres and copolymer by thermal treatment. It exhibited a lower band gap energy than TiO2 so that the optical absorption edge was shifted toward the visible light region. It also showed a better photoelectrochemical efficiency of water splitting and higher production of hydrogen due to lower energy gap, higher reactive surface area, and better charge separation efficiency.  相似文献   

6.
Photocatalytic decomposition of acetaldehyde-contained wastewater was assessed for the degradation of pollutants and the production of hydrogen. Liquid phase plasma was applied in the photoreaction as a light source. The evolution of hydrogen and acetaldehyde degradation were characterized by the photocatalytic decomposition system. Ni-loaded TiO2 photocatalysts and various porous materials were introduced to the photocatalytic reaction. The photochemical decomposition by irradiation of the liquid phase plasma without photocatalysts produced some hydrogen evolution with the degradation of acetaldehyde, which was attributed to the decomposition of the reactant by active species generated by the irradiation of liquid phase plasma. The Ni loading on TiO2 brought out an enhancement of acetaldehyde degradation and hydrogen evolution. In the photocatalysis of acetaldehyde-contained wastewater using the liquid phase plasma, hydrogen evolution was accelerated due to the additional hydrogen production by the photocatalytic decomposition of acetaldehyde. The porous materials could be used as an effective photocatalytic support. MCM-41 mesoporous material has acted as a highly efficient photocatalytic support to the TiO2 photocatalyst.  相似文献   

7.
Hydrogen production by solar energy is an efficient and clean approach to fulfill the future energy demand. Herein, a novel multi-shelled porous heterostructure CoOx/CdS/TiO2 photoanode was fabricated by the hydrothermal and chemical method. There were more active sites, suitable surface defects and heterojunction structures in the homogeneous-porous-multi-shelled CoOx/CdS/TiO2 photoanode. It showed a photocurrent density of 2.89 mA/cm2 at 1.23V vs. RHE, which is 2.22 fold of the original TiO2 photoanode. The heterostructure fabrication of the CdS/TiO2 could broaden the visible light absorption and enhance the charge separation efficiency. The multi-shelled homogeneous porous structure of the CoOx/CdS/TiO2 further enhanced the charge separation efficiency and accelerated the interfacial oxygen evolution kinetics. The mechanism for the enhanced photoelectrochemical water splitting of favorable CoOx/CdS/TiO2 photoanode is proposed.  相似文献   

8.
Material research problems towards a Ti-based tandem membrane with corrosion resistant TiO2 surfaces for direct light-induced hydrogen generation are outlined. Since doping of TiO2 with C and N interferes with oxygen evolution via the radical pathway, oxygen evolution via the 4-electron pathway has to be explored. For this purpose the incorporation of suitable catalysts into the TiO2 is necessary, which have to collect holes from gap states. A model of the membrane in form of a CIS solar cell in series with the anodic TiO2 photoreaction and the cathodic hydrogen evolution at a Pt-wire was tested to be active. UV- and visible light photocurrent imaging and differential electrochemical mass-spectroscopy as well as surface photovoltage measurements are used to investigate material and system properties.  相似文献   

9.
Hydrogen production from water using solar light energy is a significant contribution to green renewable energy economy. Separation of water splitting products is essential for this and approached by creating membrane photocatalytic system (MPS) without macroscopic metallic electrodes. The MPS has a layered structure Pt/chemically loaded TiO2/filtration loaded TiO2/porous polymer membrane/support. Influence of MPS preparation conditions on its TiO2 content, permeability, diffuse reflectance spectra, mechanical stability, Pt loading and membrane morphology was investigated. Chemical bath deposition of TiO2 followed by aging was found to be essential for mechanical stability and high activity in hydrogen production. Loading TiO2 by filtration alone is ineffective for achieving low permeability. The detected products of ethanol dehydrogenation in gas phase were H2, CO2, CH4 and C2H6 and in liquid phase CH3COOH and CH3CHO. Optimum mass of TiO2 and photodeposited Pt were found for high rate of H2 generation. The highest quantum efficiency of H2 production was 13%.  相似文献   

10.
The mesoporous Au–TiO2 nanocomposites with different Au concentrations were prepared via a co-polymer assisted sol–gel method. The structures have been characterized by powder X-Ray diffraction, N2 adsorption–desorption isotherms, diffuse reflectance UV–Vis spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy. Most generated Au nanoparticles were embedded in the mesoporous TiO2 matrix. The prepared Au–TiO2 nanocomposites exhibit remarkable visible-light activity for H2 evolution from photocatalytic water reduction in the presence of ascorbic acid as the electron donor. By comparing with Pt–TiO2 samples, we found that the visible-light activity of the Au–TiO2 nanocomposites could be partially contributed by the defects/impurity states in the TiO2 matrix, while the gold surface plasmons could significantly enhance the weak visible-light excitation of TiO2 matrix. In addition, further studies by controlling irradiation wavelengths suggest that some plasmon-excited electrons could transfer from Au nanoparticles to the contacting TiO2 to reduce water for H2 generation. We believe that these Au–TiO2 nanocomposites as well as the mechanistic studies would have considerable impact on future development of metal-semiconductor hybrid photocatalysts for efficient solar hydrogen production.  相似文献   

11.
Photosynthesis of green plants provides an effective blueprint for transform solar energy into useful hydrogen energy. Thereinto, their hierarchical structures are favorable to the light-harvesting. Meanwhile, the functional components (light-harvesting pigments) can absorb visible wavelengths of sunlight, and offer reaction center for the energy transform. Inspired by these, we contrive an artificial photosynthetic system for the high efficiency of H2-production rate by introducing a similar functional structure (reticular hierarchical structure) and component (CdS/Pt–TiO2). The CdS/Pt–TiO2 with hierarchically reticular structure is prepared by transforming wings into TiO2 via a sol–gel process, and depositing Pt and CdS nanoparticles onto the TiO2 substrate by photoreduction and chemical bath deposition method, respectively. Contributing to the couple effect of reticular hierarchical structure and ternary hybrid composition, CdS/Pt–TiO2 nanocomposites exhibit high visible-light photocatalytic H2-production rate (12.7% apparent quantum efficiency obtained at 420 nm). This concept provides a new horizon to exploit solar energy for sustainable energy by imitating the photosynthesis process from structure and ingredients.  相似文献   

12.
For the purpose of producing hydrogen using solar energy, we investigated the potential of porous titanium metal sheet (PTMS) with high surface area for use as the basal plates for various types of oxide semiconductor photo-electrodes. The TiO2 photoelectrodes were prepared by oxidation of PTMS and flat titanium metal sheet (FTMS). The photocurrents of the TiO2/PTMS electrodes were always higher than TiO2/FTMS under the same oxidation conditions. The reflectance of PTMS was lower than FTMS over the entire wavelength spectrum, suggesting that the scattered light was absorbed more effectively on the former. A nanocrystalline WO3 layer-loaded PTMS electrode (WO3/PTMS) showed a high photocurrent compared to WO3/FTMS, suggesting that PTMS is highly suitable as basal plates for semiconductor photoelectrodes.  相似文献   

13.
The MoS2 quantum dots (QDs) were interspersed on anatase TiO2 nanosheets with exposed (001) facets by a facile self-assembly strategy. As expected, the MoS2 QDs/TiO2 nanosheets display an excellent photocatalytic performance for hydrogen production, and its hydrogen evolution rate is 139 μmol/h/g. More importantly, the hydrogen evolution rate of MoS2 QDs/TiO2 nanosheets is almost 4-fold in comparison to that of nude TiO2 nanosheets. Based on the detailed characterizations, it can be obtained that the improved photocatalytic activity for hydrogen production can be ascribed to the particular characteristics of MoS2 QDs, which can intensify the photo-absorption efficiency of TiO2 nanosheets and enhance the separation and transfer efficiency of photo-excited charge carriers. It is anticipated that this work provides a novel paradigm to fabricate the highly-efficient photocatalysts for hydrogen evolution.  相似文献   

14.
The photocatalytic activity in hydrogen production from methanol reforming can be significantly enhanced by Pt/MoO3/TiO2 photocatalysts. Compared with Pt/P25, the photocatalytic activity of optimized Pt/MoO3/TiO2 shows an evolution rate of 169 μmol/h/g of hydrogen, which is almost two times higher than that of Pt/P25. XRD and Raman spectra show that MoO3 are formed on the surface of TiO2. It is found that with the bulk MoO3 just formed, the catalyst shows the highest activity due to a large amount of heterojunctions and the high crystallinity of MoO3. The HRTEM image showed a close contact between MoO3 and TiO2. It is proposed that the Z-scheme type of heterojunction between MoO3 and TiO2 is responsible for the improved photocatalytic activity. The heterojunction structure of MoO3/TiO2 does not only promote the charge separation, but also separates the reaction sites, where the oxidation (mainly on MoO3) and reduction (on TiO2) reactions occurred.  相似文献   

15.
Highly ordered TiO2 nanotube arrays were prepared by anodic oxidation of Ti foil under different anodization voltages in ethylene glycol electrolyte. The morphology and photoelectrochemical performance of the TiO2 nanotubes (NTs) samples were characterized by FESEM and electrochemical working station. Hydrogen production was measured by splitting water in the two-compartment photoelectrochemical (PEC) cell without any external applied voltage or sacrificial agent. The results indicated that anodization voltage significantly affects morphology structures, photoelectrochemical properties and hydrogen production of TiO2 NTs. The pore diameter and layer thickness of TiO2 samples increased linearly with the anodization voltage, which led to the enhancement of active surface area. Accordingly, the photocurrent response, photoconversion efficiency and hydrogen production of TiO2 nanotubes were also linearly correlated with the anodization voltage.  相似文献   

16.
CuO/TiO2 photocatalysts were prepared and shown to enhance the rate of CO2 photoreduction and the production of total organic carbon (TOC), including HCOOH, HCHO and CH3OH. Resulting TOC could act as electron donors for enhancing visible light hydrogen evolution from Pt/TiO2 photocatalysts. The impacts on CO2 photoreduction were investigated including the effect of Cu dopant, pH, irradiation time and using Na2SO3 as a sacrificial agent, and those on hydrogen evolution was also studied including TOC concentration and Pt doping. The CO2 photoreduction mechanisms with respect to pH and CO2 reduction potentials were discussed. CuO/TiO2 and Pt/TiO2 photocatalysts were characterized by X-ray diffraction, Raman spectroscopy and diffuse reflection UV-vis spectrophotometry. Both photocatalysts showed a visible light response in comparison with pure TiO2. The photocatalytic experiments and FT-IR spectra indicated that photoproduct desorption was the rate-limiting step in the CO2 photoreduction.  相似文献   

17.
Layered WO3/TiO2 nanostructures, fabricated by magnetron sputtering, demonstrate significantly enhanced photocurrent densities compared to individual TiO2 and WO3 layers. First, a large quantity of compositions having different microstructures and thicknesses were fabricated by a combinatorial approach: diverse WO3 microstructures were obtained by adjusting sputtering pressures and depositing the films in form of wedges; later layers of TiO2 nanocolumns were fabricated thereon by the oblique angle deposition. The obtained photocurrent densities of individual WO3 and TiO2 films show thickness and microstructure dependence. Among individual WO3 layers, porous films exhibit increased photocurrent densities as compared to the dense layer. TiO2 nanocolumns show length-dependent characteristics, where the photocurrent increases with increasing film thickness. However, by combining a WO3-wedge type layer with a layer of TiO2 nanocolumns, PEC properties strikingly improve, by about two orders of magnitude as compared to individual WO3 layers. The highest photocurrent that is measured in the combinatorial library of porous WO3/TiO2 films is as high as 0.11 mA/cm2. Efficient charge-separation and charge carrier transfer processes increase the photoconversion efficiency for such films.  相似文献   

18.
LiBH4 nano-particles are incorporated into mesoporous TiO2 scaffolds via a chemical impregnation method. And the enhanced desorption properties of the composite have been investigated. The LiBH4/TiO2 sample starts to release hydrogen at 220 °C and the maximal desorption peak occurs at about 330 °C, much lower compared to the bulk LiBH4. Furthermore, the composite exhibits excellent dehydrogenation kinetics, with 11 wt% of hydrogen liberated from LiBH4 at 300 °C within 3 h. X-ray diffraction and Fourier transform infrared spectroscopy are used to confirm the nanostructure of LiBH4 in the TiO2 scaffold. This work demonstrates that confinement within active porous scaffold host is a promising approach for enhancing hydrogen decomposition properties of light-metal complex hydrides.  相似文献   

19.
Highly ordered TiO2 nanotube arrays for hydrogen production have been synthesized by electrochemical anodization of titanium sheets. Under solar light irradiation, hydrogen generation by photocatalytic water splitting was carried out in the two-compartment photoelectrochemical cell without any external applied voltage. The hydrogen gas and oxygen generated on Pt side and on TiO2 nanotubes side respectively were efficiently separated. The effect of anodization time on the morphology structures, photoelectrochemical properties and hydrogen production was systematically investigated. Due to more charge carrier generation and faster charge transfer, a maximum photoconversion efficiency of 4.13% and highest hydrogen production rate of 97 μmol h−1cm−2 (2.32 mL h−1cm−2) were obtained from TiO2 nanotubes anodized for 60 min.  相似文献   

20.
Water splitting is widely employed for the hydrogen production for its abundant sources of water and sunlight. The TiO2 nanostructures are the most promising materials because of their properties of the non-toxicity and relatively low cost. Surface treatments with TiCl4 solution and titanium butoxide solution are applied on the TiO2 nanorod arrays respectively. On the surface of the TiO2 nanorods, TiO2 nanoparticles are prepared through hydrolysis of TiCl4 and homogeneous phase of TiO2 synthesized with assist of second hydrothermal synthesis in titanium butoxide, resulting in the increase of the surface area of the TiO2. Comparing with that of the original TiO2 nanorod arrays, the incident photon-to-electron conversion efficiency (IPCE) of the TiO2–TiCl4 and TiO2–H2O samples is greatly enhanced by 25% and 250% in the ultraviolet region, respectively. The obviously enhanced activity is due to the larger surface structure after treatments, which could contribute to the improved performance in the water splitting. These surface treatments provide an efficient way to regulate the properties of the TiO2 nanorod arrays for their extensive applications in the solar device for the hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号