首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured semiconductor thin films of Zn-Fe2O3 modified with underlying layer of Fe-TiO2 have been synthesized and studied as photoelectrode in photoelectrochemical (PEC) cell for generation of hydrogen through water splitting. The Zn-Fe2O3 thin film photoelectrodes were designed for best performance by tailoring thickness of the Fe-TiO2 film. A maximum photocurrent density of 748 μA/cm2 at 0.95 V/SCE and solar to hydrogen conversion efficiency of 0.47% was observed for 0.89 μm thick modified photoelectrode in 1 M NaOH as electrolyte and under 1.5 AM solar simulator. To analyse the PEC results the films were characterized for various physical and semiconducting properties using XRD, SEM, EDX and UV–Visible spectrophotometer. Zn-Fe2O3 thin films modified with Fe-TiO2 exhibited improved visible light absorption. A noticeable change in surface morphology of the modified Zn-Fe2O3 film was observed as compared to the pristine Zn-Fe2O3 film. Flatband potential values calculated from Mott–Schottky curves also supported the PEC response.  相似文献   

2.
In this study, we have developed a facile chemical bath deposition (CBD) method to grow p-type Cu2O nanoparticles on n-type TiO2 nanowire arrays (TiO2 NWAs) to fabricate TiO2/Cu2O core/shell heterojunction nanowire arrays (TiO2/Cu2O core/shell NWAs). When used as photoelectrode, the fabricated TiO2/Cu2O core/shell NWAs show improved photoelectrochemical (PEC) water splitting activity to pure TiO2 NWAs. The effects of the CBD cycle times on the PEC activities have been studied. The TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode prepared by cycling 5 times in the CBD process achieves the highest photocurrent of 2.5 mA cm?2, which is 2.5 times higher than that of pure TiO2 NWAs. In addition, the H2 generation rate of this photoelectrode reaches to 32 μmol h?1 cm?2, 1.7 times higher than that of pure TiO2 NWAs. Furthermore, the TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode shows excellent photostability and achieves a stable photocurrent of over 2.3 mA cm?2 during long light illumination time of 5 h. The enhanced photocatalytic activity of TiO2/Cu2O core/shell heterojunction nanowire array photoelectrode is attributed to the synergistic actions of TiO2 and Cu2O for improving visible light harvesting, and efficient transfer and separation of photogenerated electrons and holes.  相似文献   

3.
This paper deals with a study on the effect of 120 MeV Ag9+ ion irradiation on photoelectrochemical properties of SrTiO3 thin films deposited on Indium doped Tin Oxide (ITO) coated glass by sol-gel spin-coating technique. The structural evolution in the pristine and irradiated films was determined by X-ray diffraction and X-ray photoelectron spectroscopy. Surface morphology was studied by Atomic Force Microscopy (AFM) and optical measurements were done by UV-visible absorption spectroscopy. Irradiation of SrTiO3 thin films was found to be effective in improving its photoelectrochemical properties. A noticeable decrease in the average grain diameter from 36 to 26 nm, reduction in bandgap from 3.55 to 3.43 eV and increase in roughness after irradiation contributed in enhancing photoelectrochemical activity of SrTiO3 thin films. Thin films irradiated at fluence 3 × 1012 ions cm−2, when used in PEC cell exhibited enhanced photocurrent of 0.16 mA cm−2 at zero bias conditions, which was four times higher than that of the unirradiated sample.  相似文献   

4.
In present work, we report a facile fabrication process to improve the photoelectrochemical (PEC) performance of ZnO-based photoelectrodes. In order to achieve that, the Cu2O nanocubes are cathodic-deposited on the as-prepared ZnO nanorods. Then rGO nanosheets are electrodeposited on the ZnO/Cu2O heterostructures. The fabricated photoelectrodes are systematically studied in detail by different characterization techniques such as powder X-ray diffraction, micro-Raman, X-ray photoelectron spectroscopy, ultraviolet diffused reflectance spectroscopy and photoluminescence spectroscopy analysis. Morphologies of the fabricated photoelectrodes are investigated through electron microscopy in scanning and transmission mode. To evaluate the PEC performance of the fabricated photoelectrodes, the line scan voltammetry (LSV) measurement is performed using a three-electrode system in 0.5-M Na2SO4 electrolyte solution under stimulated light illumination at 100 mW/cm2 from a 300-W Xenon Arc lamp coupled with an AM 1.5G filter using a three-electrode system. The photocurrent measurement demonstrates that the photoelectrodes based on ZnO/Cu2O/rGO possess enhanced PEC performance compared to the pristine ZnO and ZnO/Cu2O photoelectrodes. The photocurrent density of ZnO/Cu2O/rGO-15 photoelectrode (10.11 mA/cm2) is ∼9 and ∼3 times higher than the photoelectrodes based on pristine ZnO (1.06 mA/cm2) and ZnO/Cu2O (3.22 mA/cm2). The enhanced PEC performance of ZnO/Cu2O/rGO photoelectrode is attributed to the excellent light absorption properties of Cu2O and excellent catalytic and charge transport properties of rGO. Experimental results reveal that the proposed functional nanomaterials have a great potential in water splitting applications.  相似文献   

5.
Thin film deposition of Cu2O and application for solar cells   总被引:1,自引:0,他引:1  
Deposition conditions of cuprous oxide (Cu2O) thin films on glass substrates and nitrogen doping into Cu2O were studied by using reactive radio-frequency magnetron sputtering method. The effects of defect passivation by crown-ether cyanide treatment, which simply involves immersion in KCN solutions containing 18-crown-6 followed by rinse, were also studied. By the crown-ether cyanide treatment, the luminescence intensity due to the near-band-edge emission of Cu2O at around 680 nm was enhanced, and the hole density was increased from 1016 to 1017 cm−3. Finally, polycrystalline p-Cu2O/n-ZnO heterojunctions were grown for use in solar cells. Two deposition sequences were studied, ZnO deposited on Cu2O and Cu2O deposited on ZnO. It was found that the crystallographic orientation and current–voltage characteristics of the heterojunction were significantly influenced by the deposition sequence, both being far superior for the heterojunction with structure Cu2O on ZnO than for the inverse structure. We successfully obtained a photoresponse for the first time in the deposited thin film of Cu2O/ZnO.  相似文献   

6.
To investigate the mechanisms of the improvement on separation efficiency of photogenerated carriers, a Fe2O3/SrTiO3 heterojunction semiconductor with an improved separation efficiency was successfully prepared. The heterojunction semiconductor was characterized with X-ray diffraction (XRD), UV–vis absorption spectrum, scanning electron microscope (SEM) and surface photovoltage (SPV) spectroscopy. The energy band diagrams of Fe2O3 and SrTiO3 were determined with X-ray photoelectron spectroscopy (XPS), based on which the conduction band offset (CBO) between Fe2O3 and SrTiO3 was quantified to be 1.26 ± 0.03 eV. The recombination of photogenerated carriers was investigated with photoluminescence (PL) spectrum, which indicates that the formation of Fe2O3/SrTiO3 decreases the recombination. Thus the improved separation efficiency is mainly due to the energy difference between the conduction band edges of Fe2O3 and SrTiO3, and the decreased electron-hole recombination for Fe2O3/SrTiO3.  相似文献   

7.
Cr-doped-TiO2 thin films, with three different Cr concentrations (2, 5.5, and 9 at.%), have been synthesized by radio-frequency magnetron sputtering in order to sensitize TiO2 in visible light. UV–visible spectra showed that maximum narrowing (2.1 eV) of the TiO2 band gap is obtained for the highest Cr concentration. However, negligible photocurrent was measured with Indium Tin Oxide (ITO)/Cr-doped-TiO2 (9 at.%) single bilayer sample due to the increased recombination rate of the photo-generated charges on the defects associated to the Cr3+ ions. To lower the charge recombination rate in the Cr-doped-TiO2, multilayer films with different numbers of ITO/Cr-doped-TiO2 (9 at.%) bilayers (namely, 3-, 4-, 5-, 6- and 7-bilayers) were deposited by keeping the total thickness of TiO2 constant in each multilayer film. When the multilayer films were exposed to visible light, we observed that the photocurrent increases as function of the number of bilayers by reaching the maximum with 6-bilayers of ITO/Cr-doped-TiO2. The enhanced photocurrent is attributed to: 1) higher absorption of visible light by Cr-doped-TiO2, 2) number of space charge layers in form of ITO/TiO2 interfaces in multilayer films, and 3) generation of photoelectrons just in/or near to the space charge layer by decreasing the Cr-doped-TiO2 layer thickness. The reduced charge recombination rate in multilayer films was also confirmed by studying the photocurrent kinetic curve. The superior photocatalytic efficiency of the 6-bilayers film implies higher hydrogen production rate through water-splitting: we obtained indeed 24.4 μmol/h of H2 production rate, a value about two times higher than that of pure TiO2 (12.5 μmol/h).  相似文献   

8.
Hydrogen gas can be converted to electricity through fuel cells and is considered as a friendly energy source. Herein, pure Cu2O and Ni-doped Cu2O thin films were deposited on glass substrates using the RF/DC-sputtering technique for hydrogen production via the photoelectrochemical (PEC) water-splitting process. The preferred orientation for pure and Ni-doped Cu2O films was (111) crystallographic plane. The average nanograins size was decreased from 32.17 nm for pure to 10.40 nm through the doping process with Ni content. Field-emission scanning electron microscopy (FE-SEM) and ImageJ analysis showed that the pure Cu2O and Ni-doped Cu2O were composed of normal distribution of nanograins in a regular form. The optical bandgap of the Cu2O film was decreased from 2.35 eV to 1.9 eV after doping with 2.6 wt% of Ni-dopants. The photoluminescence (PL) spectra for all the sputtered films were recorded at room temperature to examine the effect of Ni-dopants in the Cu2O lattice. Pure and Ni-doped Cu2O films were applied for PEC water splitting for hydrogen (H2) production under white light and monochromatic illumination. The PEC studies displayed that increasing the Ni content up to 2.6 wt% in the pure Cu2O films led to an increase in the photocurrent density to reach ?5.72 mA/cm2. The optimum photoelectrode was studied for reproducibility, stability, and electrochemical impedance. The incident photon to current conversion efficiency (IPCE%) was 16.35% at 490 nm, and the applied bias photon to current conversion efficiency (ABPE%) was 0.90% at 0.65 V. Consequently, Ni-doped Cu2O photoelectrodes are efficient and low-cost for practical and industrial solar H2 production.  相似文献   

9.
An attempt has been made to stabilize the photocurrent in a photoelectrochemical cell by depositing thin Au and SiO films onto the Cu2O photoelectrode. In case of Au deposition, the photocurrent was either quenched or reduced. This may be the cause of insufficient formation of surface states in the electrode-electrolyte interfaces. In a Sio deposited photoelectrode, its effect was to decrease the quantum efficiency of a fresh sample, however, this deposition does not affect the value obtained for the band gap at 2.11 eV for an uncoated sample. It may be interpreted that the observed deterioration is not due strictly to surface effects or chemical reaction at the surface.  相似文献   

10.
Silver deposited titania (Ag/TiO2) nanocomposite thin films were fabricated by the simple sonochemical deposition of Ag on preformed aerosol-assisted chemical vapor deposited TiO2 thin films. The photelectrocatalytic performance of a newly fabricated Ag/TiO2-modified photoelectrode was studied for methanol oxidation under simulated solar AM 1.5G irradiation (100 mW/cm2). The Ag/TiO2-modified photoelectrode showed a photocurrent density of 1 mA/cm2, which is four times that of an unmodified TiO2 photoelectrode. The modification of Ag on the TiO2 surface significantly enhanced the photoelectrocatalytic performance by improving the interfacial charge transfer processes, which minimized the charge recombination. Density functional theory (DFT) calculation studies revealed that methanol could be easily adsorbed onto the Ag surfaces of Ag/TiO2 via a partial electron transfer from Ag to methanol. The newly fabricated Ag/TiO2-modified photoelectrode could be a promising candidate for photoelectrochemical applications.  相似文献   

11.
In this paper, the CuInS2 films were firstly modified with CdS and CdS/ZnO/ZnO:Al/Au layers in order to improve the photoelectrochemical (PEC) water splitting efficiency. The CuInS2 photoelectrode was synthesized by electrodeposition method as a facial and green method, on the FTO substrate. The effects of pH and concentration of Na2S electrolyte solution on the photocurrent density of photoelectrode samples were studied. As a p-n junction photocathode, the CIS/CdS/ZnO/ZnO:Al/Au photoelectrode indicates the enhanced PEC activity. The photocurrent density of CIS/CdS/ZnO/ZnO:Al/Au photoelectrode reaches to 1.91 mA/cm2, while is about 2.5 times higher than that for CuInS2 film at pH = 8 (−0.6 V vs Ag/AgCl). The formation of a p-n junction at the CuInS2 photoelectrode surface not only reduces the recombination of electron-hole pairs but also increases the PEC response and water splitting performance of the as-prepared CIS/CdS/ZnO/ZnO:Al/Au photoelectrode.  相似文献   

12.
Functional carbon nanotubes (CNTs) were incorporated into Ti-doped Fe2O3 thin films by a facile, one-step co-electrodeposition method. The films were characterized by X-ray diffraction, scanning electron microscopy, UV–visible absorption, and X-ray photoelectron spectroscopy. The introduction of CNTs results in a better absorption in visible region and greatly enhances the photoelectrochemical properties of the Ti–Fe2O3 films. The improved photoelectrochemical properties of the CNTs and Ti co-doped Fe2O3 films are due to the charge equilibration which interplays between the Ti–Fe2O3 and CNTs. The effect of CNTs to mediate fast charge transfer and to retard charge recombination rate in the composites is also demonstrated by kinetics analysis and electrochemical impedance spectroscopy. The influence of different groups-modified CNTs and different content of CNTs was also studied. The highest photocurrent is 4.5 mA/cm2 at 1.23 V (vs. RHE) obtained by incorporating 0.10 mg/mL amino-group modified CNTs in the Ti–Fe2O3 film. The amino-functionalized CNTs doped film exhibits the highest photoelectric response compared with those doped by the pristine and acid-treated CNTs under the same conditions, which can be ascribed to the better hydrophilicity and dispersibility of the amino-functionalized CNTs.  相似文献   

13.
Fe2O3 nanostructures photoanodes were prepared via sol–gel spin-coating method onto fluorine-doped tin oxide glass substrates using six different surfactants: polyethylene glycol (PEG-300), Triton X-100, pluronic F127, cetyltrimethylammonium bromide (CTAB), octadecyltrimethylammonium bromide (OTAB) and tetradecyltrimethylammonium bromide (TTAB). The resulting films have thickness from 520 ± 10 to 980 ± 10 nm after calcinations at 450 °C in the air. A comparative study of photocatalytic activity of thin films was performed. The photo-generated samples were determined by measuring the currents and voltages under illumination of UV–vis light. The highest photocurrent density of 1.77 mA/cm2 at 1 V/SCE, under illumination intensity of 100 mW cm−2 from a solar simulator with a global AM 1.5 filter, were produced by TTAB treated sample. The optical properties, morphology, surface roughness and structure of the films were also characterized by UV–visible spectroscopy, SEM, AFM and XRD. The results are consistent with photocatalytic performance: TTAB treated sample has the highest grain size and optical absorption. The improved performance of this sample can be attributed to the crystallinity process of TTAB, which leads to the larger grain size and highest photocatalytic activity. The study demonstrates that photoelectrochemical performance of metal oxide can be improved by simply changing surfactant. The results highlighted the superior performance of cationic surfactants over non-ionic surfactants in preparing Fe2O3 photoanodes by sol–gel method. Moreover, the study showed that decreasing hydrocarbon tail of cationic surfactants can increase the crystallite size and improve photocatalytic activity.  相似文献   

14.
CdO and Cu2O thin films have been grown on glass substrates by chemical deposition method. Optical transmittances of the CdO and Cu2O thin films have been measured as 60–70% and 3–8%, respectively in 400–900 nm range at room temperature. Bandgaps of the CdO and Cu2O thin films were calculated as 2.3 and 2.1 eV respectively from the optical transmission curves. The X-ray diffraction spectra showed that films are polycrystalline. Their resistivity, as measured by Van der Pauw method yielded 10−2–10−3 Ω cm for CdO and approximately 103 Ω cm for Cu2O. CdO/Cu2O solar cells were made by using CdO and Cu2O thin films. Open circuit voltages and short circuit currents of these solar cells were measured by silver paste contacts and were found to be between 1–8 mV and 1–4 μA.  相似文献   

15.
Broadening the light absorption and accelerating the separation of photogenerated electron-hole pairs is of crucial importance for strongly enhancing the photoelectrochemical (PEC) water splitting performances of photoelectrode. In this paper, a novel CaBi6O10/Cu2O/NiOOH photoanode for photoelectrochemical water splitting is prepared, where, the NiOOH acts as water oxidation catalyst to accelerate water oxidation taking place in the interfaces between electrode and electrolyte, Cu2O is chosen to extend the absorption range of the light absorber, enhancing an efficient separation and transfer of the electron-hole pairs. This triple CaBi6O10/Cu2O/NiOOH photoanode negatively shifts the onset potential and exhibits an improved photocurrent density 1.89 mA·cm?2 at 1.23 V vs RHE, which is 1.4 and 4.8 times higher compared to CaBi6O10/Cu2O and CaBi6O10, respectively. More importantly, the CaBi6O10/Cu2O/NiOOH electrode shows excellent photoelectrochemical stability in comparison with CaBi6O10/Cu2O after 2 h irradiation. The amazing photoelectrochemical performance is due to the broader light absorption spectrum, the improved photogenerated carriers separation, transfer and consumption. The research results demonstrate a promising ternary semiconductor structure, which can improve photoelectrochemical performance effectively. Moreover, these results also imply that the CaBi6O10/Cu2O/NiOOH heterojunction structure has a great potential application for photoelectrochemical water splitting systems.  相似文献   

16.
Cu2Se/InxSe(x≈1) double layers were prepared by sequentially evaporating In2Se3 and Cu2Se binary compounds at room temperature on glass or Mo-coated glass substrates and CuInSe2 films were formed by annealing them in a Se atmosphere at 550°C in the same vacuum chamber. The InxSe thickness was fixed at 1 μm and the Cu2Se thickness was varied from 0.2 to 0.5 μm. The CuInSe2 films were single phase and the compositions were Cu-rich when the Cu2Se thickness was above 0.35 μm. And then, a thin CuIn3Se5 layer was formed on the top of the CuInSe2 film by co-evaporating In2Se3 and Se at 550°C. When the thickness of CuIn3Se5 layer was about 150 nm, the CuInSe2 cell showed the active area efficiency of 5.4% with Voc=286 mV, Jsc=36 mA/cm2 and FF=0.52. As the CuIn3Se5 thickness increased further, the efficiency decreased.  相似文献   

17.
In this study, nanostructured α-Fe2O3 thin films were deposited by simple electrodeposition for photoelectrochemical water splitting. Post-annealing temperature was found to have drastic effect on photoactivity of these films. SEM analysis illustrated that size of nanoparticles increases with annealing temperature. The current–potential characteristics showed that the water-splitting photocurrent strongly depends on post-annealing temperature. A maximum photocurrent density of 0.67 mA/cm2 was observed at 1.23 V versus reversible hydrogen electrode (RHE) under standard illumination conditions (AM 1.5 G 100 mW/cm2), and the water-splitting current was over 1.0 mA/cm2 before the dark current flow starts (at 1.55 V versus RHE). The electrode shows an onset potential as low as 0.8 V (versus RHE) for water photooxidation, which is one of the best results reported for hematite photoanodes. This high photoactivity of electrodes is attributed to the preferential growth of hematite nanostructures along the most conductive plane (001) and incorporation of Sn in film from the substrate at high annealing temperature. The best-performing electrode shows an incident photon conversion efficiency (IPCE) of 12% at 400 nm (in 1 M NaOH at 1.23 V versus RHE), which indicate the improved light-harvesting properties of these nanostructures.  相似文献   

18.
Ag@TiO2 nanoparticle thin film was fabricated for photoelectrochemical water splitting in the visible light region. Under the irradiation of UV light, positive photocurrent was enhanced in both electrolytes of 0.1 M HNO3 and 0.1 M NaOH owing to the excitation of photoelectrons within the TiO2 shells. However, under the irradiation of visible light, the enhancement of positive photocurrent was observed only in 0.1 M HNO3 because of the formation of a Schottky barrier band bending at the Ag-TiO2 core-shell interface and the generation of photoelectrons resulted from the surface plasmon resonance of Ag cores. In 0.1 M NaOH, significant negative photocurrent was enhanced due to the influences of higher pH on the surface state and energy level of TiO2 shells. Such a visible light-induced photoresponse enhancement and photocurrent direction switching made the Ag@TiO2 nanoparticle thin film useful not only as a photoelectrode for water splitting but also as a photo-switch in a basic electrolyte.  相似文献   

19.
Cu2O/Cu/TiO2 nanotube heterojunction arrays were prepared by assembling Cu@Cu2O core-shell nanoparticles on TiO2 nanotube arrays (NTAs) using a facile impregnation-reduction method. SEM and TEM results show that Cu@Cu2O plate-like nanoparticles with tens of nanometers in size are confined inside TiO2 NTAs. Only the outmost several nanometers of the nanoparticles are Cu2O and the predominant inner of the nanoparticles are Cu metals. Cu L3VV Auger spectra of Cu2O/Cu/TiO2 NTAs suggest that Cu metals are enveloped by at least several nanometers Cu2O on the surface, which further confirms the Cu@Cu2O core shell structure of Cu nanoparticles. The ability of light absorption of Cu2O/Cu/TiO2 NTAs is enhanced. The range of absorption wavelengths changes from 400 to 700 nm due to the surface plasmon response of Cu metals core and Cu2O nanoparticles shell. The photocatalytic hydrogen production rate of Cu2O/Cu/TiO2 heterojunction arrays is enhanced when compared with those of Cu2O/TiO2 NTAs and TiO2 NTAs under UV light. Moreover, a stable H2 generation property was obtained under visible light (λ gt; 400 nm). The Cu metal core is believed to play a key role in the enhancement of photocatalytic properties of Cu2O/Cu/TiO2 nanotube heterojunction arrays.  相似文献   

20.
Visible-light-response Cr/N-codoped SrTiO3 was prepared by a sol–gel hydrothermal method. The comparison studies indicate that Cr-doped and Cr/N-codoped SrTiO3 can be synthesized by this means, but not the N-doped SrTiO3. The theoretical calculations exhibit the defect formation energy of the Cr/N codoping into SrTiO3 is much smaller than that of the N doping into SrTiO3, illuminating that the incorporation of Cr can promote the N doping into the O sites in the SrTiO3. Compared to the Cr-doped SrTiO3, the Cr/N-codoped SrTiO3 photocatalyst shows the high photocatalytic activities for hydrogen production with the quantum efficiency of 3.1% at 420 nm, due to the smaller band gap and much less vacancy defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号