首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZrCo1−xNix (x = 0, 0.1, 0.2 and 0.3) alloys were prepared and their hydrogen storage behavior were studied. ZrCo1−xNix alloys of compositions with x = 0, 0.1, 0.2 and 0.3 prepared by arc-melting method and characterized by X-ray diffraction analysis. XRD analysis showed that the alloys of composition with x = 0, 0.1, 0.2 and 0.3 forms cubic phase similar to ZrCo with traces of ZrCo2 phase. A trace amount of an additional phase similar to ZrNi was found for the alloy with composition x = 0.3. Hydrogen desorption pressure–composition–temperature (PCT) measurements were carried out using Sievert's type volumetric apparatus and the hydrogen desorption pressure–composition isotherms (PCIs) were generated for all the alloys in the temperature range of 523–603 K. A single sloping plateau was observed for each isotherm and the plateau pressure was found to increase with increasing Ni content in ZrCo1−xNix alloys at the same experimental temperature. A van't Hoff plot was constructed using plateau pressure data of each pressure–composition isotherm and the thermodynamic parameters were calculated for desorption of hydrogen in the ZrCo1−xNix–H2 systems. The enthalpy and entropy change for desorption of hydrogen were calculated. In addition, the hydrogen absorption–desorption cyclic life studies were performed on ZrCo1−xNix alloys at 583 K up to 50 cycles. It was observed that with increasing Ni content the durability against disproportionation of alloys increases.  相似文献   

2.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

3.
LaNi4.70Al0.30 was characterized by SEM, EDS and XRD. The structure was refined by the Rietveld method. The intermetallic stability temperature range in air was analyzed by DSC. The intermetallic is destabilized at T > 160° C. The intermetallic was annealed at this temperature for 24 h in air. After that, the pressure-composition-isotherms were measured. The thermodynamic properties were calculated from the Van’t Hoff diagrams. Values obtained were ΔHf = 30 ± 2 kJ/mol and ΔSf = 0.13 ± 0.01 kJ/mol for absorption process and ΔHd = 31 ± 2 kJ/mol and ΔSd = 0.14 ± 0.01 ± kJ/mol for desorption process. From these results, a scheme of thermal compression of hydrogen (TCH) was proposed. The scheme has a practical compression ratio (Rc) of 7.2 in the 25–100 °C temperature range and 1–1000 kPa pressure range.  相似文献   

4.
New photocatalysts of Sb2TixSy (x = 0, 0.5, 1.0, 1.5 mol and y = 3, 4, 5, 6 mol) fan blade-like core-shell nanorods have been designed ultimately to enhance hydrogen production. The nanorods of 500 nm long and 60–100 nm wide are Sb2S3 nanorod surrounded by an amorphous TiS2 membrane, showing absorption band edges of above 600 nm. The evolution of H2 from methanol/water (1:1) photo-splitting over Sb2TixSy nanorods in the liquid system is doubled, compared to that over pure Sb2S3. Particularly, 52 μmol of H2 gas is produced after 10 h when 0.5 g of Sb2Ti1.0S5 nanorods is used at pH = 7, and the performance is increased by more than 50% at higher pH. Based on cyclic voltammetry (CV) and UV-Visible absorption spectra, the high photocatalytic activity can be attributed to the existence of an appropriate band-gap state, which includes the scope of the redox potential of water in Sb2Ti1.0S5 nanorods, resulting in the promotion of the redox reaction of water.  相似文献   

5.
A series of LaNi1−xFexO3 (x = 0.0, 0.2, 0.4, 0.7, and 1.0) perovskites were synthesized and characterized by X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), H2-temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The perovskites were investigated for selective catalytic reduction of NOx by hydrogen (H2-SCR). It is shown that Fe addition into LaNiO3 leads to a promoted efficiency of NOx removal, as well as a high stability of perovskite structure. Moreover, easy reduction of Ni3+ to Ni2+ with the aid of appropriate Fe component mainly accounts for the enhanced activity. Meanwhile, deactivation of the sulfated catalysts is due to that sulfates mainly deposit on active Ni component while doping of Fe can protect Ni to some extent at the expense of partial sulfation.  相似文献   

6.
The effect of Ni-substitution on the structure and hydrogen storage properties of Mg2Cu1−xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys prepared by a method combining electric resistance melting with isothermal evaporation casting process (IECP) has been studied. The X-ray single-crystal diffraction analysis results showed that the cell volume decreases with increasing Ni concentration, and crystal structure transforms Mg2Cu with face-centered orthorhombic into Ni-containing alloys with hexagonal structure. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt% H, respectively, at 573 K under 50 bar H2. After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg–Cu–Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg–Cu and Mg–Ni alloys. With increasing nickel content, the effect of Ni is actually effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of the desorption temperature of these two phases.  相似文献   

7.
The structure and electrochemical properties of LaNi4.4 − xCo0.3Mn0.3Alx hydrogen storage alloys have been investigated by XRD and simulated battery test, including maximum capacity, cyclic stability, self-discharge, high-rate dischargeability (HRD). Samples A, B, C and D were used to represent alloys LaNi4.4Co0.3Mn0.3Al, LaNi4.3Co0.3Mn0.3Al0.1, LaNi4.2Co0.3Mn0.3Al0.2 and LaNi4.1Co0.3Mn0.3Al0.3 respectively. The results indicated that as-prepared LaNi4.4 − xCo0.3Mn0.3Alx alloys are all single-phase alloys with hexagonal CaCu5 type structure. The maximum discharge capacity is 330.4 mAh g−1 (Alloy C). With the increase of Al content from A to D, cycle life of alloy electrode has been improved. Higher capacity retention of 89.29% (after 50 charge/discharge cycles) has been observed for electrode D, while with a smaller capacity loss of 12.5% in its self-discharge test. Better high-rate charge/discharge behaviors have been observed in electrode B, and the maximum data is 54.7% at charge current of 900 mA/g) and 68.54% at discharge current of 1800 mA/g). Furthermore, the electrochemical impedance spectroscopy (EIS) analysis shown that the reaction of alloy electrode is controlled by charge-transfer step. The addition of Al results in the formation of protective layer of aluminum oxides on the surface of the alloy electrode, which is good for the improvement of electrode properties in alkaline solution and is detrimental for the charge-transfer process. Therefore, a suitable addition of Al is needed to improve its electrode properties.  相似文献   

8.
Recovery of hydrogen from industrial H2S waste using spinel photocatalyst was studied. Spinel metal oxide photocatalysts (CuGa2−xFexO4 for x = 0.8, 0.6 and 0.4) were synthesized by ceramic route. They were loaded with 0.5 and 1 wt% noble metal oxide, RuO2. Their XRD pattern revealed a single phase cubic spinel crystalline structure for all the catalysts. SEM displayed small size cubic particles with the particle size decreasing with the decrease in iron content. 1 wt% RuO2 loaded CuGa1.6Fe0.4O4 decomposed H2S in aqueous 0.5 M KOH solution under visible light (λ ≥ 420 nm) irradiation and generated H2 to the tune of 10,045 μmol/h, giving rise to a high quantum efficiency of 21% at 510 nm.  相似文献   

9.
10.
Perovskite-like oxides LaNi1−xCuxO3 (x = 0.1, 0.4, 0.5) were prepared by means of the citric acid complexing method. TPR revealed the incorporation of Cu into the perovskite lattice increased the reducibility of the catalyst. After LaNi1−xCuxO3 were pretreated in H2 for 2 h at certain low temperature, the material still retained its perovskite structure and oxygen vacancies were generated in the lattice. DRS showed that narrowing of band-gap of reduced LaNi1−xCuxO3 was governed by the crystalline structure and the defect in the catalyst. In the photocatalytic water splitting experiment, 200 and 250°C-reduced LaNi0.6Cu0.4O3, 200°C-reduced LaNi0.5Cu0.5O3 possessed the high and colse catalytic activity. XPS showed that the molar ratio of Cu2+/Cu1≈1 and lattice oxygen/adsorb oxygen ≈ 0.2 in the catalysts had high catalytic activity. According to the outcome of our experiments, we conclude that there is a balance relation either between oxygen vacancies and catalytic activity or between Cu2+/Cu1+ redox couples and catalytic performance of these materials for hydrogen production from photocatalytic water splitting. Enhancement of hydrogen yield can be attributed to the small band-gap and the lowering the recombination probability for electron-hole pairs.  相似文献   

11.
12.
Multiphase photocatalysts Pt/Cd1−xZnxS/ZnO/Zn(OH)2, Pt/Cd1−xZnxS/ZnO, and Pt/Cd1−xZnxS/Zn(OH)2 were synthesized by a new two-step technique. The photocatalysts were characterized by a wide range of experimental techniques: X-ray diffraction, high-resolution transmission electron microscopy combined with energy-dispersive X-ray spectroscopy, low-temperature N2 adsorption/desorption, and UV/VIS spectroscopy. The photocatalytic activity was tested in a batch reactor in the reaction of H2 evolution from aqueous solutions of ethanol under visible light irradiation (λ > 420 nm). The highest achieved photocatalytic activity was 2256 μmol H2 per gram of photocatalyst per hour; the highest quantum efficiency was 10.4%. The activity of Pt/Cd1−xZnxS/Zn(OH)2 was higher than that of Pt/Cd1−xZnxS/ZnO/Zn(OH)2 and Pt/Cd1−xZnxS/ZnO. The explanation of enhanced activity of zinc–cadmium sulfide/ε-zinc hydroxide based on quantum calculations was suggested.  相似文献   

13.
MgH2 is a perspective hydrogen storage material whose main advantage is a relatively high hydrogen storage capacity (theoretically, 7.6 wt.% H2). This compound, however, shows poor hydrogen desorption kinetics. Much effort was devoted in the past to finding possible ways of enhancing hydrogen desorption rate from MgH2, which would bring this material closer to technical applications. One possible way is catalysis of hydrogen desorption. This paper investigates separate catalytic effects of Ni, Mg2Ni and Mg2NiH4 on the hydrogen desorption characteristics of MgH2. It was observed that the catalytic efficiency of Mg2NiH4 was considerably higher than that of pure Ni and non-hydrated intermetallic Mg2Ni. The Mg2NiH4 phase has two low-temperature modifications below 508 K: un-twinned phase LT1 and micro-twinned phase LT2. LT1 was observed to have significantly higher catalytic efficiency than LT2.  相似文献   

14.
The Mg2NiH4 complex hydrides were synthesized by high-energy ball milling (HEBM) MgH2 + Ni mixtures. Multi-walled carbon nanotubes (MWCNTs) or TiF3 as catalysts were added and the catalytic-dehydrogenation behaviors were investigated. All prepared samples are characterized by X-ray diffraction (XRD) spectroscopy, scanning electron microscope (SEM) and differential scanning calorimetry (DSC) to acquire information of microstructure, phase compositions, surface and dehydrogenation properties. The results indicate that the method of adding catalysts by HEBM is reasonable and the hydrogen desorption property of Mg2NiH4 is improved by catalysts. It is worth noting that the dehydrogenation temperature (TD) and the activation energy (Ea) of Mg2NiH4 catalyzed by MWCNTs coupling with TiF3 are reduced to 230 °C (243.6 °C of Mg2NiH4) and 53.24 kJ/mol (90.13 kJ/mol of Mg2NiH4), respectively. The addition of proper catalysts is proved to be an effective strategy to decrease TD and Ea of Mg2NiH4 hydrides.  相似文献   

15.
Photocatalytic hydrogen production was investigated over ZnS1−x−0.5yOx(OH)y-ZnO using sulfide ion (Na2S-Na2SO3) as an electron donor from NaCl saltwater. NaCl can affect markedly the activity for photocatalytic hydrogen production, depending on NaCl concentration. When NaCl concentration is lower, the activity is lower than that in pure water, whereas when NaCl concentration is higher, the activity is higher than that in pure water. NaCl decreases not only the surface charge of ZnS1−x−0.5yOx(OH)y-ZnO but also the surface hydration. When ZnS1−x−0.5yOx(OH)y-ZnO was impregnated with the electron donor (Na2S-Na2SO3), ZnO was transformed partly into ZnS. The impregnated ZnS1−x−0.5yOx(OH)y-ZnO exhibits higher activity than the non-impregnated one. The possible mechanisms were discussed.  相似文献   

16.
La(0.9−x)CexFeO3 perovskite-like catalysts were investigated for the production of hydrogen from simulated coal-derived syngas via the water-gas shift reaction in the temperature range 450-600 °C and at 1 atm. These catalysts exhibited higher activity at high temperatures (T ≥ 550 °C), compared to that of a commercial high temperature iron-chromium catalyst at 450 °C. Addition of a low Ce content (x = 0.2), has little influence on the formation of the LaFeO3 perovskite structure, but enhances catalytic activity especially at high temperatures with 19.17% CO conversion at 550 °C and 40.37% CO conversion at 600 °C. The LaFeO3 perovskite structure and CeO2 redox properties play an important role in enhancing the water-gas shift activity. Addition of a high Ce content (x = 0.6) inhibits the formation of the LaFeO3 perovskite structure and decreases catalyst activity.  相似文献   

17.
We have performed ab initio calculations with equilibrium supercells of the Mg2Ni compound and its hydride Mg2NiH4 doped with elements X = Al, Ga, In, Si, Ge and Sn. Two concentrations of X in both structures have been set: (1) every 16th, and (2) every fourth Ni atom has been substituted by X. Total energy calculations yielded the Mg2NiH4 hydrogen absorption enthalpy ΔHabs according to the chemical reaction Mg2Ni + 2H2 → Mg2NiH4. Reduction of the hydrogen absorption enthalpy was reported for both concentrations of X. When doping the Mg2NiH4 hydride with X = In in a low concentration (1), the value of hydrogen desorption enthalpy decreases from 68.22 to 55.96 kJ(mol H2)?1. Doping with X = In in a high concentration (2) further decreases the hydrogen desorption enthalpy to 5.50 kJ(mol H2)?1. Further, the electronic structure of Mg2(Ni–In)H4 hydride with a low In concentration indicates weaker Ni–H bonds in comparison with the pristine Mg2NiH4. Attraction between H and In atoms induced enhanced bonding between Mg and H atoms compared to the pristine Mg2NiH4.  相似文献   

18.
A ternary Mg2NiH4 hydride was synthesized using method that relies on a relatively short mechanical milling time (one hour) of a 2:1 MgH2–Ni powder mixture followed by sintering at a sufficiently high hydrogen pressure (>85 bar) and temperature (>400 °C). The ternary hydride forms in less than 2.5 h (including the milling time) with a yield of ∼90% as a mixture of two polymorphic forms. The mechanisms of formation and decomposition of ternary Mg2NiH4 under different hydrogen pressures were studied in detail using an in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and high pressure DSC. The obtained experimental results are supported by morphological and microstructural investigations performed using SEM and high resolution STEM. Additionally, effects occurring during the desorption reaction were studied using DSC coupled with mass spectrometry.  相似文献   

19.
The microstructure and electrochemical hydrogen storage characteristics of La0.67Mg0.33−xCaxNi2.75Co0.25 (x = 0, 0.05, 0.10 and 0.15) alloys are investigated. The results show that all alloys mainly consist of (La, Mg)Ni3 and LaNi5 phases, besides a small amount of (La, Mg)2Ni7 phase. The cycle stability (S80) after 80 charge/discharge cycles of all alloy electrodes first increases from 60.1% (x = 0) to 64.2% (x = 0.05), then decreases to 45.9% (x = 0.15). The high rate dischargeability of all alloy electrodes first increases from 52.6% (x = 0) to 61.4% (x = 0.10), then decreases to 57.2% (x = 0.15). Moreover, the charge-transfer resistance (Rct) first decreases from 168.2 mΩ (x = 0) to 125.7 mΩ (x = 0.10), then increases to 136.6 mΩ (x = 0.15). All the results indicate that the substitution of Mg with a certain amount of Ca can improve the overall electrochemical characteristics.  相似文献   

20.
Cd1−xZnxS solid solutions (x = 0.05–0.3) supported on mesoporous silica SBA-16 substrate with 3D cubic structure were investigated for hydrogen production from water splitting under visible light. The influence of Zn concentration (x) in the Cd1−xZnxS solid solution and support morphology were investigated. The bare SBA-16 substrate was synthetized by the hydrothermal method whereas the Cd1−xZnxS photocatalysts were prepared by coprecipitation of metal sulfides from aqueous solutions of Cd2+ and Zn2+ using Na2S as precipitating agent. An attempt has been made to determine the photocatalyst structures using several techniques including elemental analysis, N2 adsorption–desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) and Raman spectroscopy. Surface characterization of the samples by XPS indicates that Cd1−xZnxS nanoparticles are unevenly distributed on both external surface and within the pore network. An increase of the band gap energy with increasing Zn loading up to x = 0.2 in the Cd1−xZnxS solid solution was observed. As a consequence, H2 evolution increases gradually with an increase of the Zn loading in the photocatalysts from 0.05 to 0.2 wt% being the Cd0.8Zn0.2S/SBA-16 system the most active among the catalysts studied. The highest activity of this photocatalyst was explained in terms not only of its large band gap energy but also by the enhancement of the interaction between the particles of solid solution and the SBA-16 substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号