首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A continuous increase in the greenhouse gases concentration due to combustion of fossil fuels for energy generation in the recent decades has sparked interest among the researchers to find a quick solution to this problem. One viable solution is to use hydrogen as a clean and effective source of energy. In this paper, an extensive review has been made on the effectiveness of metallic catalyst in hydrocarbon reforming for COX free hydrogen production via different techniques. Among all metallic catalyst, Ni-based materials impregnated with various transition metals as promoters exhibited prolonged stability, high methane conversions, better thermal resistance and improved coke resistance. This review also assesses the effect of reaction temperature, gas hour space velocity and metal loading on the sustainability of thermocatalytic decomposition TCD of methane. The practice of co-feeding of methane with other hydrocarbons specifically ethylene, propylene, hydrogen sulphide, and ethanol are classified in this paper with the detailed overview of TCD reaction kinetics over an empirical model based on power law that has been presented. In addition, it is also expected that the outlook of TCD of methane for green hydrogen production will provide researchers with an excellent platform to the future direction of the process over Ni-based catalysts.  相似文献   

2.
Bimetallic, dual bed catalysts made up of metal oxides were investigated in the millisecond catalytic partial oxidation of methane to synthesis gas. A metal oxide combustion catalyst containing manganese, chromium, or copper was coupled with a nickel reforming catalyst to carry out the partial oxidation of methane. These catalysts produce hydrogen yields that compare to a platinum/nickel dual bed catalyst at a fraction of the cost. The high space velocity of the millisecond reactor improves performance by giving high rates of heat convection from the exothermic, upstream combustion catalyst to the downstream, endothermic reforming catalyst. Additionally, over a 10 h experiment, the catalyst activity did not decrease.  相似文献   

3.
Production of high purity hydrogen (<50 ppm CO) by steam–iron process (SIP) from a synthetic sweetened biogas has been investigated making use of a natural iron ore containing up to 81 wt% of hematite (Fe2O3) as oxygen carrier. The presence of a lab-made catalyst (NiAl2O4 with NiO excess above its stoichiometric composition) was required to carry out the significant transformation of mixtures of methane and carbon dioxide in hydrogen and carbon monoxide by methane dry reforming reaction. Three consecutive sub-stages have been identified along the reduction stage that comprise A) the combustion of CH4 by lattice oxygen of NiO and Fe2O3, B) catalyzed methane dry reforming and C) G–G equilibrium described by the Water-Gas-Shift reaction. Oxidation stages were carried out with steam completing the cycle. Oxidation temperature was always kept constant at 500 °C regardless of the temperature used in the previous reduction to minimize the gasification of eventual carbon deposits formed along the previous reduction stage. The presence of other oxides different from hematite in minor proportions (SiO2, Al2O3, CaO and MgO to name the most significant) confers it an increased thermal resistance against sintering respecting pure hematite at the expense of slowing down the reduction and oxidation rates. A “tailor made” hematite with additives (Al2O3 and CeO2) in minor proportions (2 wt%) has been used to stablish comparisons in performance between natural and synthetic iron oxides. It has been investigated the effect of the reduction temperature, the proportion of methane to carbon dioxide in the feed (CH4:CO2 ratio) and the number of repetitive redox cycles.  相似文献   

4.
Mg-based hydrogen storage alloys have become a research hotspot in recent years owing to their high hydrogen storage capacity, good reversibility of hydrogen absorption/desorption, low cost, and abundant resources. However, its high thermodynamic stability and slow kinetics limit its application, so the modification of Mg-based hydrogen storage alloys has become the development direction of Mg-based alloys. Transition metals can be used as catalysts for the dehydrogenation of hydrogen storage alloys due to their excellent structural, electrical, and magnetic properties. Graphene, because of its unique sp2 hybrid structure, excellent chemical stability, and a specific surface area of up to 2600 m2/g, can be used as a support for transition metal catalysts. In this paper, the internal mechanism of graphene as a catalyst for the catalysis of Mg-based hydrogen storage alloys was analyzed, and the hydrogen storage properties of graphene-catalyzed Mg-based hydrogen storage alloys were reviewed. The effects of graphene-supported different catalysts (transition metal, transition metal oxides, and transition metal compounds) on the hydrogen storage properties of Mg-based hydrogen storage alloys were also reviewed. The results showed that graphene played the roles of catalysis, co-catalysis, and inhibition of grain aggregation and growth in Mg-based hydrogen storage materials.  相似文献   

5.
Dry reforming of methane (DRM) is known to produce synthesis gas through the utilization of greenhouse gases to ensure environmentally benign process and rational use of natural resources. Many catalyst formulations operating at “ideal” conditions were proposed for DRM reaction, including those based on noble (Pt, Rh) and non-noble (Ni, Co) metals supported on various oxides. This review is focused on the recent advances in lanthanoid-containing Ni-based DRM catalysts. We consider the performance of Ni-based catalysts supported on LnOx oxides (La2O3, CeO2, etc.), promotion of the said composites by noble or transition metals, organization of pristine and promoted Ni–LnOx interfaces on the surfaces of various supports, including ordered materials. Analysis of features of the high-performance DRM catalysts is provided. The outlook of the existing challenges and opportunities in the rational design of a new generation of lanthanoid-containing Ni-based catalysts for dry reforming of methane and other hydrocarbons is provided.  相似文献   

6.
Development and testing of catalytic filters for partial oxidation of methane to increase hydrogen production in a biomass gasification process constitute the subject of the present study. Nickel, iron and lanthanum were coated on calcium silicate filters via co-impregnation technique, and catalytic filters were characterized by ICP-MS, XPS, XRD, TEM, TGA, TPR and BET techniques. The influences of varying reaction temperature and addition of Fe or La to Ni-based catalytic filters on methane conversion, and hydrogen selectivity have been investigated in view of preliminary results obtained from reactions with 6% methane-nitrogen mixture, and catalytic filters were tested with model biogas mixtures at optimum reaction temperature of each filter which were 750 °C or 850 °C. Approximately 93% methane conversion was observed with nearly 6% methane-nitrogen mixture, and 97.5% methane conversion was obtained with model biogas containing CH4 which is 6%, CO2, CO, and N2 at 750 °C. These results indicate that calcium silicate provides a suitable base material for catalytic filters for partial oxidation of methane and biogas containing methane.  相似文献   

7.
The development of a high performance and low cost catalyst is an important contribution to clean hydrogen production via the catalytic steam reforming of renewable bio-oil. Solid waste coal ash, which contains SiO2, Al2O3, Fe2O3 and many alkali and alkaline earth metal oxides, was selected as a superior support for a Ni-based catalyst. The chemical composition and textural structures of the ash and the Ni/Ash catalysts were systematically characterized. Acetic acid and phenol were selected as two typical bio-oil model compounds to test the catalyst activity and stability. The conversion of acetic acid and phenol reached as much as 98.4% and 83.5%, respectively, at 700 °C. It is shown that the performance of the Ni/Ash catalyst was comparable with other commercial Ni-based steam reforming catalysts.  相似文献   

8.
Partial gasification of coal char was conducted with addition of metal oxides for co-production of fuel gas and methane decomposition catalysts. Effect of the metal composition (Ni, Co and Fe based mono- or bi-metals) was investigated on the fuel gas production and the resultant catalyst surface and textural properties, morphology and performance in catalytic methane decomposition (CMD). Besides H2-rich fuel gas production (the combustion energy up to 11.03–23.42 MJ/kgchar) from the gasification, the gasification residue can directly serve as the effective and efficient catalyst for CMD. The Fe and Fe–Co composite oxides were found to be better among the mono- and bi-metallic oxides for the fuel gas production during the gasification, respectively. The Ni-based mono-/bi-metallic catalysts could display high and stable methane conversion (up to 80%) during the 600-min CMD test at 850 °C. Promotional role of the second metal in CMD was discussed on the carbon diffusion, metal mobility and reducibility, formation and growth of the deposited carbons. The formed carbon morphology after CMD was analyzed based on the Kirkendall effect and Tammann temperature and further correlated to the potential catalyst deactivation.  相似文献   

9.
This study examines the influence of catalyst activation for methane decomposition over Co-Al mixed oxides derived from hydrotalcites. Samples were prepared by coprecipitation and characterized by surface area measurements and temperature-programmed reduction. Spent catalysts and carbon produced in the reaction were characterized by X-ray diffractometry, temperature-programmed oxidation and scanning electron microscopy. Activity runs using previously reduced samples with H2 or activated under CH4 flow were carried out in a fixed-bed reactor between 500 and 750 °C using in-line gas chromatography analysis. The specific surface area decreases as the Co/Al ratio increases, which is related to the increased Co3O4 phase rather than Co-Al mixed oxides. The TPR results indicate the reduction of four types of Co species: Co3+ and Co2+ species from Co3O4, and Co from inverse spinel (Co2AlO4) and normal spinel (CoAl2O4). Reduction with hydrogen at 750 °C was very severe. Samples reduced with H2 showed large Co° crystallites, which increased with the Co/Al ratio. Co-Al catalyst activation under methane flow leads to lower crystallite size and higher thermal stability for hydrogen production by methane decomposition.  相似文献   

10.
Methane transformation to hydrogen and synthesis gas (CO + H2) by heterogenous catalysts can play an important role to secure the supply of energy, chemicals and fuels in the future. Methane is the main constituent of natural gas and biogas and it is also found in crystalline hydrates at the continental slopes of many oceans. In view of this vast reserves and resources, the use of methane as chemical feedstock has to be intensified. In this present work, (NiMg)Al catalysts doped with Fe or Cu, prepared by co-precipitation method and characterized by different techniques, were studied in the partial oxidation of methane (Treaction = 750 °C, CH4/O2 ratio = 2). The effect of catalyst composition and pre-treatment conditions of these catalysts were investigated. Also, these catalysts show a very high activity and selectivity in the partial oxidation reaction, which depends on the conditions of catalysts preparation. The obtained results indicated increasing of activity and selectivity with decreasing calcination temperature and increasing nickel and aluminium contents in the catalysts composition. The solid doped with iron constituted the best catalyst for the total oxidation of methane and for the water–gas shift reaction. On the other hand, the addition of copper was remarkably improved the catalytic performances of the (NiMg)Al solid. So, the presence of this element supported the partial oxidation of methane with production of syngas (CO + H2). With the addition of iron or copper for the catalyst composition, we were observed (in our previous work) the possibility of formation of NiM (M = Fe or Cu) alloy which increased nickel particles dispersion. In the case of copper, the reducibility of NiO was also assisted (TPR results) which increased catalytic activity in partial oxidation of methane.  相似文献   

11.
This paper investigates the hot gas temperature effect on enhancing hydrogen generation and minimizing tar yield using zeolite and prepared Ni-based catalysts in rice straw gasification. Results obtained from this work have shown that increasing hot gas temperature and applying catalysts can enhance energy yield efficiency. When zeolite catalyst and hot gas temperature were adjusted from 250 °C to 400 °C, H2 and CO increased slightly from 7.31% to 14.57%–8.03% and 17.34%, respectively. The tar removal efficiency varies in the 70%–90% range. When the zeolite was replaced with prepared Ni-based catalysts and hot gas cleaning (HGC) operated at 250 °C, H2 contents were significantly increased from 6.63% to 12.24% resulting in decreasing the hydrocarbon (tar), and methane content. This implied that NiO could promote the water-gas shift reaction and CH4 reforming reaction. Under other conditions in which the hot gas temperature was 400 °C, deactivated effects on prepared Ni-based catalyst were observed for inhibiting syngas and tar reduction in the HGC system. The prepared Ni-based catalyst worked at 250 °C demonstrate higher stability, catalyst activity, and less coke decomposition in dry reforming. In summary, the optimum catalytic performance in syngas production and tar elimination was achieved when the catalytic temperature was 250 °C in the presence of prepared Ni-based catalysts, producing 5.92 MJ/kg of lower heating value (LHV) and 73.9% tar removal efficiency.  相似文献   

12.
Iron and iron oxides have been employed to catalyze supercritical water gasification (SCWG) of lignin, a typical component of pulp and paper mill wastewater. To investigate the effects of different oxidation sates of Fe-based catalysts during SCWG process, all simulations were carried out through ReaxFF molecular dynamics method. During the catalytic SCWG process, the degradation rate of guaiacyl dimer lignin (GDL) molecule was inversely proportional to the valence state of iron, the higher oxidation state of Fe in iron-based catalyst was, the lower the catalytic degradation ability would be, and then GDL molecule underwent a series of reactions, accompanying with the generation of small molecules, among most of them were fuel gas products. In terms of gas products, Fe catalyst had a unique advantage in catalytic hydrogen production. Moreover, it is found that iron with low oxidation state was beneficial to the formation of CO, while iron with high oxidation state was CO2. Our simulation results further revealed the formation mechanisms of CO, CO2 and CH4. Migration of lattice oxygen in iron oxides was also visualized through figure, and spent catalyst showed different sources in the final, demonstrating that SCW participates in the entire reaction providing not only H but also O free radicals.  相似文献   

13.
Ce-Fe mixed oxides prepared by co-precipitation were used as oxygen carriers for converting methane into synthesis gas through gas-solid reactions. The structural evolution and reducibility of Ce-Fe oxygen carriers with calcination temperatures from 600 to 900 °C were investigated by XRD, BET, Raman, XPS and TPR techniques and correlated to their activity for methane selective oxidation. The Ce-Fe mixed oxides calcined at low temperatures (e.g., 600 °C) show abundant oxygen vacancies and high specific surface areas, which enhances the concentration of surface adsorbed oxygen and favors the complete oxidation of methane by means of gas-solid reactions. On the other hand, a calcination temperature of 900 °C results in serious sintering and militates against the formation of Ce-Fe solid solution, which brings about catalytic methane decomposition because of the low lattice oxygen mobility. A compromise calcination temperature at 800 °C favors the interaction between iron and cerium oxides, which could improve the lattice oxygen mobility of Ce-Fe oxygen carrier, leading to a high reactivity for methane selective oxidation. More importantly, the lattice oxygen mobility of the oxygen carrier is enhanced by the generation of oxygen vacancies after a repetitive redox treatment (methane reduction/air re-oxidation), which allows the Ce-Fe oxygen carrier to maintain a high activity and stability during the successive production of synthesis gas through a redox process.  相似文献   

14.
During the last few decades, the global energy requirement is soaring significantly due to the rise of global population and economic development. This resulted in colossal release of CO2 and CH4, emissions into the atmosphere referred as greenhouse gases (GHGs), which poses a detrimental effects for the environment. One of the sustainable solutions to curb emissions of GHGs into the atmosphere is efficient utilization of syngas in order to produce useful chemicals and fuels. A comprehensive review is presented to highlight the capability of Ni-based catalysts in methane reforming through the application of both steam and dry routes referred to as bi-reforming of methane (BRM). Ni-based catalysts were found to support favorable reaction activity as they are cheaper than many exorbitant catalysts. The metal used for catalyst support exhibits higher stability and thermal resistance with improved resistance to coke formation. This review entails recent progresses in the development of Ni-based catalysts along with physical and kinetic aspects of the BRM process.  相似文献   

15.
Utilizing a compact, efficient and fast-response reactor for on-site reforming of liquid methanol is an effective method to solve the storage and transportation problems of hydrogen. In this paper, a mesh-type structured CuFeMg/γ-Al2O3/Al catalyst with strong bonding force was prepared by anodic oxidation method, and its intrinsic catalytic activity, hydrogen production capacity and start-up performance were compared with commercial granular catalyst in a plate microreactor. The results showed that although the mesh-type structured catalyst displayed lower intrinsic activity, it exhibited higher methanol conversion, which was because of the enhanced mass transfer ability. Overall, for the mesh-type structured catalyst, 27.1% higher hydrogen production capacity per unit volume was achieved when methanol conversion was 90%, and the reactor start-up time was reduced by 16.1% owing to the high thermal conductivity of the aluminum substrate. Moreover, the mesh-type structured catalyst also showed excellent stability in 160 h test.  相似文献   

16.
During the last decade, the steam-iron process has re-emerged as a possible way to separate and/or storage pure hydrogen through the use of metallic oxides subjected to redox cycles. The most renamed candidate to achieve this goal has traditionally been iron oxide. Nevertheless, the study of its behaviour along repetitive reduction/oxidation stages has shown that the hydrogen storage density diminishes abruptly from the first cycle on.To cope with this problem, the inclusion of a second metal oxide in the solid structure has been tried. Isothermal experiments of reduction with hydrogen rich flows and oxidation with steam have been carried out with Al, Cr and Ce as second metals, in nominal amounts from 1% to 10 mol% added to the hematite structure, which has been synthesized in laboratory by coprecipitation. Series of up to seven cycles (reductions followed by oxidations in a thermogravimetric system acting as differential reactor for the gas) have shown that to that point, an almost repetitive behaviour can be obtained, recovering the magnetite (Fe3O4) structure after each oxidation step.Since the second metal oxide does not intervene in the reduction/oxidation process, the optimum content of second metal for each species has been determined with the aim to keep the highest hydrogen storage density along cycles.  相似文献   

17.
In this work, gadolinium is used to modify nickel catalyst, which can improve the properties of nickel oxide particle and inhibit its sintering and grain growth. Interface contact between nickel catalyst and YSZ is significantly improved and fine anode microstructure can be obtained when gadolinium is used to modify Ni-YSZ anode. Fine interface contact of GdNi-YSZ anode can accelerate charge transfer process and steam formation process, which leads to high activity for electrochemical oxidation of hydrogen and low impedance resistance. The remarkable characteristic of GdNi-YSZ anode cell is that the cell performance for humidified methane fuel is greatly improved due to the high anode activity for methane reforming and electrochemical oxidation of hydrogen. The maximum power density of GdNi-YSZ anode cell with humidified methane as fuel can reach 1.59 W/cm2 at 800 °C and 0.46 W/cm2 at 650 °C. High performance of GdNi-YSZ anode cell with humidified methane as fuel leads to much H2O produced during the electrochemical oxidation process, which can depress carbon deposition and improve the cell stability for humidified methane fuel.  相似文献   

18.
Hydrogen is mainly produced from hydrocarbon resources. Natural gas, mostly composed of methane, is widely used for hydrogen production. As a valuable feedstock for ‘Fischer–Tropsch’ (FT) process and ‘Gas to Liquids’ (GTL) technology, syngas production from catalytic partial oxidation of methane (CPOM) is gaining prominence especially owing to its more desirable H2/CO ratio; relatively less energy consumption, and lower investment, compared to steam reforming processes (SMR), the leading technology.In the present study, effect of ruthenium (Ru) addition on molybdenum (Mo) catalysts for syngas production from methane (CH4) via partial oxidation in a monolithic reactor was investigated. Mo based catalysts supported on Nickel (Ni) and Cobalt (Co) metal oxides and Ni-Co bimetallic oxides and their Ru added versions were developed, characterized, and tested for performance in a monolithic type reactor system. Catalyst activity was investigated in terms of H2 and CO selectivity, CH4 conversion; and CO2 emission and it is concluded that addition of Ru over the structure led to increase in catalytic activity and reduction in carbon deposition over the catalyst surface.  相似文献   

19.
Hydrogen is a clean fuel widely used in fuel cells, engines, rockets and many other devices. The catalytic decomposition of methane (CDM) is a COx-free hydrogen production technology from which carbon nano materials (CNMs) can be generated as a high value-added byproduct for electrode, membranes and sensors. Recent work has focused on developing a low cost catalyst that could work without rapid deactivation by carbon deposition. In this review, the economic and environmental evaluation of CDM are compared with coal gasification, steam reforming of methane, and methanol steam reforming in terms of productivity, CO2 emissions, and H2 production and cost. CDM could be a favorable technology for on-site demand-driven hydrogen production on a small or medium industrial scale. This study covers the Fe-based, Ni-based, noble metal, and carbonaceous catalysts for the CDM process. Focusing on hydrogen (or carbon) yield and production cost, Fe-based catalysts are preferable for CDM. Although Ni-based catalysts showed a much higher hydrogen yield with 0.39 molH2/gcat./h than Fe-based catalysts with 0.22 molH2/gcat./h, the hydrogen cost of the former was estimated to be 100-fold higher ($0.89/$0.009). Further, the CDM performance on different types of reactors are detailed, whereas the molten-metal catalyst/reactor is suggested to be a promising route to commercialize CDM. Finally, the formation mechanism, characterization, and utilization of carbon byproducts with different morphologies and structures are described and analyzed. Versus other reviews, this review shows that cheap Fe-based catalysts (10 tons H2/1 ton iron ore) and novel molten-metal reactors (95% methane conversion) for CDM are feasible research directions for a fundamental understanding of CDM. The CNMs by CDM could be applied to the waste water purification, lubricating oils, and supercapacitors.  相似文献   

20.
La–Mg–Ni-based hydrogen storage alloys showed good application prospects owing to their high hydrogen storage capacity. However, the poor cycling stability was a key problem. In order to improve the cycling stability, low cost YFe0.85 master alloy was used as raw material to prepare La–Mg–Ni-based La0.8-xYxMg0.2Ni3-0.85xFe0.85x (x = 0.50, 0.55, 0.60) hydrogen storage alloys by powder sintering method. The alloys were mainly composed of PuNi3 phase and MgCu4Sn phase. With the increase of Y and Fe, the cell parameters of PuNi3 phase decreased. Lower mismatch coefficient promoted the cycling stability. As the case of x = 0.60, the capacity retention rate rose up to 95.45%. Aside from the cycling stability, appropriate substitution content contributed to higher capacity and satisfactory kinetics. As the case of x = 0.55, the hydrogen storage capacity reached 1.529 wt%, and hydriding time for the x = 0.60 alloy shrank to 76.7% of that for alloys without Y and Fe at 303 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号