首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrated power generation system combining solid oxide fuel cell (SOFC) and oxy-fuel combustion technology is proposed. The system is revised from a pressurized SOFC-gas turbine hybrid system to capture CO2 almost completely while maintaining high efficiency. The system consists of SOFC, gas turbine, oxy-combustion bottoming cycle, and CO2 capture and compression process. An ion transport membrane (ITM) is used to separate oxygen from the cathode exit air. The fuel cell operates at an elevated pressure to facilitate the use of the ITM, which requires high pressure and temperature. The remaining fuel at the SOFC anode exit is completely burned with oxygen at the oxy-combustor. Almost all of the CO2 generated during the reforming process of the SOFC and at the oxy-fuel combustor is extracted from the condenser of the oxy-combustion cycle. The oxygen-depleted high pressure air from the SOFC cathode expands at the gas turbine. Therefore, the expander of the oxy-combustion cycle and the gas turbine provides additional power output. The two major design variables (steam expander inlet temperature and condenser pressure) of the oxy-fuel combustion system are determined through parametric analysis. There exists an optimal condenser pressure (below atmospheric pressure) in terms of global energy efficiency considering both the system power output and CO2 compression power consumption. It was shown that the integrated system can be designed to have almost equivalent system efficiency as the simple SOFC-gas turbine hybrid system. With the voltage of 0.752 V at the SOFC operating at 900 °C and 8 bar, system efficiency over 69.2% is predicted. Efficiency penalty due to the CO2 capture and compression up to 150 bar is around 6.1%.  相似文献   

2.
Hydrogen production through sorption enhanced reforming (SER) use a solid CO2 absorbent to increase hydrogen purity (98%) and to perform reforming and WGS reactions in one single step, thus producing high methane conversions and important energy savings. Na2ZrO3 is as an alternate synthetic CO2 solid absorbent for SER applications. The present research is aimed to establish CO2 sorption kinetics parameters; reaction order, rate constant, apparent, intrinsic and diffusional activation energies. Na2ZrO3 sorption kinetics was studied through TGA as a function of CO2 concentration and temperature. A global reaction rate of first order in CO2 and a strong dependence in temperature was found. The approximate solution to the shrinking core model was used to fit the data. Modeling results indicated the surface reaction as the main resistance to the reaction rate, controlling reaction kinetics with only a minor contribution of the product layer diffusion resistance toward the end of the reaction.  相似文献   

3.
The coal gasification process is used in commercial production of synthetic gas as a means toward clean use of coal. The conversion of solid coal into a gaseous phase creates opportunities to produce more energy forms than electricity (which is the case in coal combustion systems) and to separate CO2 in an effective manner for sequestration. The current work compares the energy and exergy efficiencies of an integrated coal-gasification combined-cycle power generation system with that of coal gasification-based hydrogen production system which uses water-gas shift and membrane reactors. Results suggest that the syngas-to-hydrogen (H2) system offers 35% higher energy and 17% higher exergy efficiencies than the syngas-to-electricity (IGCC) system. The specific CO2 emission from the hydrogen system was 5% lower than IGCC system. The Brayton cycle in the IGCC system draws much nitrogen after combustion along with CO2. Thus CO2 capture and compression become difficult due to the large volume of gases involved, unlike the hydrogen system which has 80% less nitrogen in its exhaust stream. The extra electrical power consumption for compressing the exhaust gases to store CO2 is above 70% for the IGCC system but is only 4.5% for the H2 system. Overall the syngas-to-hydrogen system appears advantageous to the IGCC system based on the current analysis.  相似文献   

4.
In this study, we estimate and analyze the CO2 mitigation costs of large-scale biomass-fired cogeneration technologies with CO2 capture and storage. The CO2 mitigation cost indicates the minimum economic incentive required (e.g. in the form of a carbon tax) to make the cost of a less carbon intensive system equal to the cost of a reference system. If carbon (as CO2) is captured from biomass-fired energy systems, the systems could in principle be negative CO2 emitting energy systems. CO2 capture and storage from energy systems however, leads to reduced energy efficiency, higher investment costs, and increased costs of end products compared with energy systems in which CO2 is vented. Here, we have analyzed biomass-fired cogeneration plants based on steam turbine technology (CHP-BST) and integrated gasification combined cycle technology (CHP-BIGCC). Three different scales were considered to analyze the scale effects. Logging residues was assumed as biomass feedstock. Two methods were used to estimate and compare the CO2 mitigation cost. In the first method, the cogenerated power was credited based on avoided power production in stand-alone plants and in the second method the same reference output was produced from all systems. Biomass-fired CHP-BIGCC with CO2 capture and storage was found very energy and emission efficient and cost competitive compared with other conversion systems.  相似文献   

5.
This paper demonstrates the concept of applying learning curves in a consistent manner to performance as well as cost variables in order to assess the future development of power plants with CO2 capture. An existing model developed at Carnegie Mellon University, which had provided insight into the potential learning of cost variables in power plants with CO2 capture, is extended with learning curves for several key performance variables, including the overall energy loss in power plants, the energy required for CO2 capture, the CO2 capture ratio (removal efficiency), and the power plant availability. Next, learning rates for both performance and cost parameters were combined with global capacity projections for fossil-fired power plants to estimate future cost and performance of these power plants with and without CO2 capture. The results of global learning are explicitly reported, so that they can be used for other purposes such as in regional bottom-up models. Results of this study show that IGCC with CO2 capture has the largest learning potential, with significant improvements in efficiency and reductions in cost between 2001 and 2050 under the condition that around 3100 GW of combined cycle capacity is installed worldwide. Furthermore, in a scenario with a strict climate policy, mitigation costs in 2030 are 26, 11, 19 €/t (excluding CO2 transport and storage costs) for NGCC, IGCC, and PC power plants with CO2 capture, respectively, compared to 42, 13, and 32 €/t in a scenario with a limited climate policy. Additional results are presented for IGCC, PC, and NGCC plants with and without CO2 capture, and a sensitivity analysis is employed to show the impacts of alternative assumptions on projected learning rates of different systems.  相似文献   

6.
A new oxy-fuel H2 generation process with CO2 avoidance is provided. The process utilizes mass recirculation of CO and H2O to the oxyforming reactor. A comparison between non-recirculating and mass-recirculating oxyforming reactor operation is given. Main benefits of mass recirculation are emphasized. The oxyforming reactor is integrated with the H2 and CO2 separators, fuel cell and O2 generator. In the process C/O is equal to 0.5 while C/H determines the temperature level in the reactor. The reaction system includes combustion, steam reforming and water–gas shift reactions. The oxyforming process is found to be mass transport controlled with O2 as the limiting reactant. It is emphasized that under MR conditions the decomposition of H2/CO2 by water–gas shift reaction is suppressed by means of CO/H2O-enrichment and hence MR conditions allow for higher temperatures beneficial to endothermic steam reforming reaction. Under MR conditions the thermodynamic equilibrium limits are overcome and all reactions are forced to proceed to the completion which enables 100% selectivities to H2 and CO2. The effects of operation parameters such as temperature, flow rate, pressure and composition are examined. The derived S-terms enable for the concise interpretation of the effect of pressure on the concentration gradients transverse to the flow. The consistent control algorithm of the oxyforming reactor is provided.  相似文献   

7.
This article presents a consistent techno-economic assessment and comparison of CO2 capture technologies for key industrial sectors (iron and steel, cement, petroleum refineries and petrochemicals). The assessment is based on an extensive literature review, covering studies from both industries and academia. Key parameters, e.g., capacity factor (91-97%), energy prices (natural gas: 8 €2007/GJ, coal: 2.5 €2007/GJ, grid electricity: 55 €/MWh), interest rate (10%), economic plant lifetime (20 years), CO2 compression pressure (110 bar), and grid electricity CO2 intensity (400 g/kWh), were standardized to enable a fair comparison of technologies. The analysis focuses on the changes in energy, CO2 emissions and material flows, due to the deployment of CO2 capture technologies. CO2 capture technologies are categorized into short-mid term (ST/MT) and long term (LT) technologies. The findings of this study identified a large number of technologies under development, but it is too soon to identify which technologies would become dominant in the future. Moreover, a good integration of industrial plants and power plants is essential for cost-effective CO2 capture because CO2 capture may increase the industrial onsite electricity production significantly.For the iron and steel sector, 40-65 €/tCO2 avoided may be achieved in the ST/MT, depending on the ironmaking process and the CO2 capture technique. Advanced LT CO2 capture technologies for the blast furnace based process may not offer significant advantages over conventional ones (30-55 €/tCO2 avoided). Rather than the performance of CO2 capture technique itself, low-cost CO2 emissions reduction comes from good integration of CO2 capture to the ironmaking process. Advanced smelting reduction with integrated CO2 capture may enable lower steel production cost and lower CO2 emissions than the blast furnace based process, i.e., negative CO2 mitigation cost. For the cement sector, post-combustion capture appears to be the only commercial technology in the ST/MT and the costs are above 65 €/tCO2 avoided. In the LT, a number of technologies may enable 25-55 €/tCO2 avoided. The findings also indicate that, in some cases, partial CO2 capture may have comparative advantages. For the refining and petrochemical sectors, oxyfuel capture was found to be more economical than others at 50-60 €/tCO2 avoided in ST/MT and about 30 €/tCO2 avoided in the LT. However, oxyfuel retrofit of furnaces and heaters may be more complicated than that of boilers.Crude estimates of technical potentials for global CO2 emissions reduction for 2030 were made for the industrial processes investigated with the ST/MT technologies. They amount up to about 4 Gt/yr: 1 Gt/yr for the iron and steel sector, about 2 Gt/yr for the cement sector, and 1 Gt/yr for petroleum refineries. The actual deployment level would be much lower due to various constraints, about 0.8 Gt/yr, in a stringent emissions reduction scenario.  相似文献   

8.
Developing new methods and technologies that compete with conventional industrial processes for CO2 capture and recovery is a hot topic in the current research. Conventional processes do not fit with the current approach of process intensification but take advantage due to their maturity and large-scale implementation. Acting in a precombusion scenario or post-combustion scenario involves the separation of CO2/H2 or CO2/N2, respectively.  相似文献   

9.
CO2 methanation was performed over 10 wt%Ni/CeO2, 10 wt%Ni/α-Al2O3, 10 wt%Ni/TiO2, and 10 wt%Ni/MgO, and the effect of support materials on CO2 conversion and CH4 selectivity was examined. Catalysts were prepared by a wet impregnation method, and characterized by BET, XRD, H2-TPR and CO2-TPD. Ni/CeO2 showed high CO2 conversion especially at low temperatures compared to Ni/α-Al2O3, and the selectivity to CH4 was very close to 1. The surface coverage by CO2-derived species on CeO2 surface and the partial reduction of CeO2 surface could result in the high CO2 conversion over Ni/CeO2. In addition, superior CO methanation activity over Ni/CeO2 led to the high CH4 selectivity.  相似文献   

10.
During the last 15 years cycles with CO2 capture have been in focus, due to the growing concern over our climate. Often, a natural gas fired combined cycle with a chemical absorption plant for CO2 capture from the flue gases have been used as a reference in comparisons between cycles. Neither the integration of the steam production for regeneration of amines in the combined cycle nor the off-design behaviour of such a plant has been extensively studied before.  相似文献   

11.
In this work, CO2 capture and H2 production during the steam gasification of coal integrated with CO2 capture sorbent were investigated using a horizontal fixed bed reactor at atmospheric pressure. Four different temperatures (650, 675, 700, and 750 °C) and three sorbent-to-carbon ratios ([Ca]/[C] = 0, 1, 2) were studied. In the absence of sorbent, the maximum molar fraction of H2 (64.6%) and conversion of coal (71.3%) were exhibited at the highest temperature (750 °C). The experimental results verified that the presence of sorbent in the steam gasification of coal enhanced the molar fraction of H2 to more than 80%, with almost all CO2 was fixed into the sorbent structure, and carbon monoxide (CO) was converted to H2 and CO2 through the water gas shift reaction. The steam gasification of coal integrated with CO2 capture largely depended on the reaction temperature and exhibited optimal conditions at 675 °C. The maximum molar fraction of H2 (81.7%) and minimum CO2 concentration (almost 0%) were obtained at 675 °C and a sorbent-to-carbon ratio of 2.  相似文献   

12.
This paper presents a summary of technical-economic studies. It allows evaluating, in the French context, the production cost of electricity derived from coal and gas power plants with the capture of CO2, and the cost per tonne of CO2 avoided. Three systems were studied: an Integrated Gasification Combined Cycle (IGCC), a conventional combustion of Pulverized Coal (PC) and a Natural Gas Combined Cycle (NGCC). Three main methods were envisaged for the capture of CO2: pre-combustion, post-combustion and oxy-combustion.For the IGCC, two gasification types have been studied: a current technology based on gasification of dry coal at 27 bars (Shell or GE/Texaco radiant type) integrated into a classical combined cycle providing 320 MWe, and a future technology (planned for about 2015–2020) based on gasification of a coal–water mixture (slurry) that can be compressed to 64 bars (GE/Texaco slurry type) integrated into an advanced combined cycle (type H with steam cooling of the combustion turbine blades) producing a gross power output of 1200 MWe.  相似文献   

13.
The power sectors of many big economies still rely on coal-fired plants and emit huge amounts of carbon dioxide. Emerging countries like Brazil, China and South Africa plan to expand the use of coal-fired thermal plants in the next decade. Integrated gasification combined cycle (IGCC) is an innovative technology that facilitates the implementation of carbon capture (CC). The present work analyzes the maturity and costs of the IGCC technology, with and without CC, and assesses the effect of the technology risk on its economic viability. Findings show that the inclusion of the risk in the economic analysis of IGCC plants raises the cost of CO2 avoided from 36 US$/tCO2 to 106 US$/tCO2 in the case of Shell Gasifiers and from 39 US$/tCO2 to 112 US$/tCO2 in the case of GE Gasifiers. Thus, the introduction of IGCC with CC on a wider scale faces huge uncertainties. The feasibility of these plants will rely heavily on the overcoming of the technology risk. Besides, its implementation in the short run will depend on government incentives to bear with the additional cost incurred in the first-generation plants.  相似文献   

14.
CO2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO2 (typically by 85–90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15–30% for current CCS systems. To characterize such impacts, an alternative definition of the “energy penalty” is proposed in lieu of the prevailing use of this term.  相似文献   

15.
In order to identify approaches for integrated gasification combined cycle (IGCC) plant optimization it is necessary to analyse where and why the losses in the process occur. Therefore a structured exergy analysis of an IGCC with carbon capture was performed to identify losses on a plant, subsystem and individual component level.The investigation of the IGCC base case revealed an exergetic efficiency of 40%. Thus, 60% of the whole fuel exergy is lost in the process. On the subsystem level it was found that the major loss contributor is the combined cycle followed by the gas treatment section and the gasification island. Furthermore, it was demonstrated that the significance of the losses is higher in upstream processes than in downstream processes. On the individual component level it is shown that 80% of all exergy losses in the plant are caused by just 4 components. Since two of them are related to the gas conditioning an advanced hot gas clean-up (HGCU) system was proposed which improves exergy efficiency of the IGCC plant by 5.2%-points. However, assuming an ideal IGCC process an exergy efficiency of 54.1% was calculated demonstrating significant potential for further optimization of the technology.  相似文献   

16.
Two novel system configurations were proposed for oxy-fuel natural gas turbine systems with integrated steam reforming and CO2 capture and separation. The steam reforming heat is obtained from the available turbine exhaust heat, and the produced syngas is used as fuel with oxygen as the oxidizer. Internal combustion is used, which allows a very high heat input temperature. Moreover, the turbine working fluid can expand down to a vacuum, producing an overall high-pressure ratio. Particular attention was focused on the integration of the turbine exhaust heat recovery with both reforming and steam generation processes, in ways that reduce the heat transfer-related exergy destruction. The systems were thermodynamically simulated, predicting a net energy efficiency of 50–52% (with consideration of the energy needed for oxygen separation), which is higher than the Graz cycle energy efficiency by more than 2 percentage points. The improvement is attributed primarily to a decrease of the exergy change in the combustion and steam generation processes that these novel systems offer. The systems can attain a nearly 100% CO2 capture.  相似文献   

17.
There is great consensus that hydrogen will become an important energy carrier in the future. Currently, hydrogen is mainly produced by steam reforming of natural gas/methane on large industrial scale or by electrolysis of water when high-purity hydrogen is needed for small-scale hydrogen plants. Although the conventional steam reforming process is currently the most economical process for hydrogen production, the global energy and carbon efficiency of this process is still relatively low and an improvement of the process is key for further implementation of hydrogen as a fuel source. Different approaches for more efficient hydrogen production with integrated CO2 capture have been discussed in literature: Chemical Looping Combustion (CLC) or Chemical Looping Reforming (CLR) and membrane reactors have been proposed as more efficient alternative reactor concepts relative to the conventional steam reforming process. However, these systems still present some drawbacks. In the present work a novel hybrid reactor concept that combines the CLR technology with a membrane reactor system is presented, discussed and compared with several other novel technologies. Thermodynamic studies for the new reactor concept, referred to as Membrane-Assisted Chemical Looping Reforming (MA-CLR), have been carried out to determine the hydrogen recovery, methane conversion as well as global efficiency under different operating conditions, which is shown to compare quite favorably to other novel technologies for H2 production with CO2 capture.  相似文献   

18.
ICL (Indirect coal liquefaction), an alternative fuel-supplying technology, has drawn much attention and caused considerable debate in China’s energy sector. The hurdles to its development include the high risk of investment into large-scale installations, the high CO2 emissions and water resource consumption. A comprehensive assessment of ICL is urgently needed. This study provides an economic assessment and a technical analysis based on process simulations. To address the future challenge of curbing CO2 emissions, three absorption methods are compared for capturing the CO2 released from the ICL process: DMC (a novel absorbent), MEA and Rectisol. The comparative results suggest that physical absorbents, represented by Rectisol and DMC, have a remarkable advantage over chemical absorption processes, represented by MEA. The Rectisol process costs the least, while the DMC process is close to the same level. As a novel absorbent, DMC has the potential to be widely used in the future. The economic analysis of ICL predicted a high capital cost of over 35 billion yuan and an overall product cost of approximately 3800 yuan/ton for the baseline. In addition, via a sensitivity analysis, coal price, electricity price and capacity factor were identified as the three most influential factors affecting the overall product cost.  相似文献   

19.
A quarter-century ago, one of us termed the use of nuclear energy a Faustian Bargain. In this paper, we discuss what a Faustian Bargain means, how the expression has been used in characterizing other technologies, and in what measure CO2 capture and storage is a Faustian Bargain. If we are about to enter into another Faustian Bargain, we should understand the contract.  相似文献   

20.
The knowledge about pressure–volume–temperature–composition (PVTxy) properties plays an important role in the design and operation of many processes involved in CO2 capture and storage (CCS) systems. A literature survey was conducted on both the available experimental data and the theoretical models associated with the thermodynamic properties of CO2 mixtures within the operation window of CCS. Some gaps were identified between available experimental data and requirements of the system design and operation. The major concerns are: for the vapour–liquid equilibrium, there are no data about CO2/COS and few data about the CO2/N2O4 mixture. For the volume property, there are no published experimental data for CO2/O2, CO2/CO, CO2/N2O4, CO2/COS and CO2/NH3 and the liquid volume of CO2/H2. The experimental data available for multi-component CO2 mixtures are also scarce. Many equations of state are available for thermodynamic calculations of CO2 mixtures. The cubic equations of state have the simplest structure and are capable of giving reasonable results for the PVTxy properties. More complex equations of state such as Lee–Kesler, SAFT and GERG typically give better results for the volume property, but not necessarily for the vapour–liquid equilibrium. None of the equations of state evaluated in the literature show any clear advantage in CCS applications for the calculation of all PVTxy properties. A reference equation of state for CCS should, thus, be a future goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号