首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal hydrides are considered as promising candidates for hydrogen storage as they exhibit higher energy densities than compressed gas storage storages. This study represents a theoretical thermodynamic analysis of metal hydride‐based hydrogen storage systems, focusing mainly on the energy demand to operate the storage system and the resulting efficiency. The main energy demand occurs during hydrogen release. This energy demand is composed of three contributions: the heat required to heat the hydride up to desorption temperature, the heat of reaction and the work of compression to reach the targeted outlet pressure. A sensitivity analysis was performed to demonstrate the impact of several parameters, for example, heat of reaction and hydrogen uptake on the energy balance. The most influential parameter is the heat of reaction. The hydrogen uptake does not have a noticeable influence as long as it is not too low. Several possibilities to improve the efficiency of the storage system are discussed (heat integration and the application of a heat storage system). Heat integration can significantly improve the overall efficiency, whereas the application of a heat storage system does not seem realistic. Compared with other hydrogen storage technologies, metal hydrides can feature higher efficiencies than low‐temperature hydrogen storage concepts, for example, liquefied or cryo‐adsorbed hydrogen. The efficiencies of a metal hydride storage system are similar to those reached with a system based on liquid organic hydrogen carriers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The high price of hydrogen fuel in the fuel cell vehicle refuelling market is highly dependent on the one hand from the production costs of hydrogen and on the other from the capital cost of a hydrogen refuelling station's components to support a safe and adequate refuelling process of contemporary fuel cell vehicles. The hydrogen storage technology dominated in the vehicle sector is currently based on high-pressure compressed hydrogen tanks to extend as much as possible the driving range of the vehicles. However, this technology mandates the use of large hydrogen compression and cooling systems as part of the refuelling infrastructure that consequently increase the final cost of the fuel. This study investigated the prospects of lowering the refuelling cost of small urban hydrogen vehicles through the utilisation of metal hydride hydrogen storage. The results showed that for low compression hydrogen storage, metal hydride storage is in favour in terms of the dispensed hydrogen fuel price, while its weight is highly comparable to the one of a compressed hydrogen tank. The final refuelling cost from the consumer's perspective however was found to be higher than the compressed gas due to the increased hydrogen quantity required to be stored in fully empty metal hydride tanks to meet the same demand.  相似文献   

3.
Power-to-Power is a process whereby the surplus of renewable power is stored as chemical energy in the form of hydrogen. Hydrogen can be used in situ or transported to the consumption node. When power is needed again, hydrogen can be consumed for power generation. Each of these processes incurs energy losses, leading to a certain round-trip efficiency (Energy Out/Energy In). Round-trip efficiency is calculated considering the following processes; water electrolysis for hydrogen production, compressed, liquefied or metal-hydride for hydrogen storage, fuel-cell-electric-truck for hydrogen distribution and micro-gas turbine for hydrogen power generation. The maximum achievable round-trip efficiency is of 29% when considering solid oxide electrolysis along with metal hydride storage. This number goes sharply down when using either alkaline or proton exchange membrane electrolyzers, 22.2% and 21.8% respectively. Round-trip efficiency is further reduced if considering other storage media, such as compressed- or liquefied-H2. However, the aim of the paper is to highlight there is still a large margin to increase Power-to-Power round-trip efficiency, mainly from the hydrogen production and power generation blocks, which could lead to round-trip efficiencies of around 40%–42% in the next decade for Power-to-Power energy storage systems with micro-gas turbines.  相似文献   

4.
The present study discusses the thermodynamic compatibility criteria for the selection of metal hydride pairs for the application in coupled metal hydride based thermal energy storage systems. These are closed systems comprising of two metal hydride beds – a primary bed for energy storage and a secondary bed for hydrogen storage. The performance of a coupled system is analyzed considering Mg2Ni material for energy storage and LaNi5 material for hydrogen storage. A 3-D model is developed and simulated using COMSOL Multiphysics® at charging and discharging temperatures of 300 °C and 230 °C, respectively. The LaNi5 bed used for hydrogen storage is operated close to ambient temperature of 25 °C. The results of the first three consecutive cycles are presented. The thermal storage system achieved a volumetric energy storage density of 156 kWh m−3 at energy storage efficiency of 89.4% during third cycle.  相似文献   

5.
A comparative techno-economic evaluation of the methods of hydrogen storage in an automobile as to the overall energy consumption is presented. The effect is demonstrated of the storage vessel mass and the primary energy expenditures on the specific energy consumption of the automobile at its given fuel distance endurance. It is shown that, at present, the most expedient systems for automobiles of all types are metal hydride systems. Some aspects of thermal exchange and mass transfer in metal hydride are discussed, which allows an evaluation of the dynamic performance of storage vessels. Test results of prototype automobiles confirm that the use of metal hydride storage vessels is promising, especially if the engine operates on mixed fuel (gasoline and hydrogen).  相似文献   

6.
In the framework of the HyTunnel-CS European project sponsored by Clean Hydrogen Joint Undertaking (CH JU), a number of tests were conducted in a full-scale tunnel in France. These tests are devoted to safety of hydrogen-fuelled vehicles having a compressed gas storage. The goal of the study is to develop recommendations for Regulations, Codes and Standards (RCS) for inherently safer use of hydrogen vehicles in enclosed transportation systems. Two sets of tests have been performed, (a) five tests with compressed hydrogen tanks, (b) two tests with compressed helium tanks. The hydrogen gas pressure varied between 47 bar and 610 bar. The blast wave overpressures are recorded together with fireball characteristics. The obtained experimental data are compared to existing engineering correlations and it is confirmed that not only the mechanical energy of compressed gas but also a fraction of chemical energy contribute to the blast wave strength.  相似文献   

7.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

8.
Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.  相似文献   

9.
Hydrogen storage is critical for developing viable hydrogen vehicles. This paper compares compressed hydrogen, cryogenic hydrogen and metal hydride (Mg and FeTi) options using net energy analysis. A simulation of an Indian vehicle with an urban drive cycle using a fuel cell stack is carried out to determine the total hydrogen required per km of travel.Net energy analysis is carried out considering the energy requirements of the storage device and the energy required to produce and store the hydrogen. From net energy analysis compressed hydrogen is the preferred option. The direct energy requirement is more than 55% for magnesium hydride as compared to compressed hydrogen due to the combined effect of increase in weight and higher heat of desorption.In addition to volumetric and gravimetric storage density, it is felt that net energy analysis should be also included as an additional criteria for evaluating any storage option. For metal hydride storage the net energy required to produce the tank should be minimum. This could be used as a selection criterion to design an optimum metal hydride storage. The performance of other materials like porous carbon, carbon nanotubes and hybrids can be evaluated using net energy analysis.  相似文献   

10.
The reaction of hydrogen gas with a metal to form a metal hydride is exothermic. If the heat released is not removed from the system, the resulting temperature rise of the hydride will reduce the hydrogen absorption rate. Hence, hydrogen storage systems based on hydride materials must include a way to remove the heat generated during the absorption process. The heat removal rate can be increased by (i) increasing the effective thermal conductivity of the metal hydride by mixing it with high-conductivity materials such as aluminum foam or graphite, (ii) optimizing the shape of the tank, and (iii) introducing an active cooling environment instead of relying on natural convection. This paper presents a parametric study of hydrogen storage efficiency that explores quantitatively the influence of these parameters. An axisymmetric mathematical model was formulated in Ansys Fluent 12.1 to evaluate the transient heat and mass transfer in a cylindrical metal hydride tank, and to predict the transient temperatures and mass of hydrogen stored as a function of the thermal conductivity of the enhanced hydride material, aspect ratio of the cylindrical tank, and thermal boundary conditions. The model was validated by comparing the transient temperature at selected locations within the storage tank with concurrent experiments conducted with LaNi5 material. The parametric study revealed that the aspect ratio of the tank has a stronger influence when the effective thermal conductivity of the metal hydride bed is low or when the heat removal rate from the tank surface is high (active cooling). It was also found that for a hydrogen filling time of 3 min, adding 30% aluminum foam to the metal hydride maximizes hydrogen absorption under natural convection, whereas the addition of only 10% aluminum foam maximizes the hydrogen content under active cooling. For filling times beyond 3 min, the amount of aluminum foam required to maximize hydrogen content can be reduced for both natural convection and active cooling. This study should prove useful in the design of practical metal hydride-based hydrogen storage systems.  相似文献   

11.
This paper presents a comparative study of two cases of metal hydride hydrogen storage units working on (i) LaNi5 (ii) Compacts of LaNi5 incorporated with expanded natural graphite (ENG). It has been observed from the previous studies that the hydriding/dehydriding reactions eventually causes large strain changes, due to which the hydride forming metal alloys disintegrate and form a powder bed. Such reactor beds usually have a low thermal conductivity which minimizes the heat transfer phenomenon occurring during the absorption of hydrogen gas. Therefore, there is a need to implement heat augmentation methods to significantly enhance the thermal conductivity. The objective of this research is to present a 2-D numerical model using Finite Volume Method (FVM) and estimate the hydrogen storage performance of a cylindrical metal hydride bed for both the cases, i.e. powdered metal hydride bed and ENG compacts-based reactor bed at different values of inlet pressure and heat transfer fluid temperature. In this study, a detailed investigation on the absorption process reveals that reactor beds with compacted disks of LaNi5 and ENG demonstrate an enhanced effective thermal conductivity and efficient mass transfer. The simulation results show that a remarkable improvement in the heat transfer and hydrogen storage capacity with reduced absorption time can be achieved by using LaNi5 and ENG compacts. It was observed that the average reactor bed temperature dropped from 345.13 K to 337.37 K when the ENG based compacted disks was introduced into the reactor bed. Moreover, for supply pressure of 24 bar and fluid temperature of 293 K, the time taken to absorb hydrogen into the rector to achieve stabilized hydrogen storage capacity was estimated to be 446s and 232 s for the case of metal hydride and ENG compacts-based bed, respectively.  相似文献   

12.
Adsorbed hydrogen storage and transportation technology recently became competitive to compressed gas method due to high energy density capability achievements. New composite material (metal-hydride particles on the activated carbon fibre matrix) was developed as efficient hydrogen sorbent for gas storage and transportation system application. Effect of the carbon matrix nature and metal hydride content experimentally was investigated.To enhance the performance and thermodynamic efficiency of the gas storage vessel a heat pipe thermal control system was suggested. A two-dimensional transient model developed to analyze the influence of the thermal control on the operating characteristics of the sectional storage vessel with hydrogen and heat pipes.  相似文献   

13.
Five different hydrogen vehicle storage technologies are examined on a Well-to-Wheel basis by evaluating cost, energy efficiency, greenhouse gas (GHG) emissions, and performance. The storage systems are gaseous 350 bar hydrogen, gaseous 700 bar hydrogen, Cold Gas at 500 bar and 200 K, Cryo-Compressed Liquid Hydrogen (CcH2) at 275 bar and 30 K, and an experimental adsorbent material (MOF 177) -based storage system at 250 bar and 100 K. Each storage technology is examined with several hydrogen production options and a variety of possible hydrogen delivery methods. Other variables, including hydrogen vehicle market penetration, are also examined. The 350 bar approach is relatively cost-effective and energy-efficient, but its volumetric efficiency is too low for it to be a practical vehicle storage system for the long term. The MOF 177 system requires liquid hydrogen refueling, which adds considerable cost, energy use, and GHG emissions while having lower volumetric efficiency than the CcH2 system. The other three storage technologies represent a set of trade-offs relative to their attractiveness. Only the CcH2 system meets the critical Department of Energy (DOE) 2015 volumetric efficiency target, and none meet the DOE’s ultimate volumetric efficiency target. For these three systems to achieve a 480-km (300-mi) range, they would require a volume of at least 105-175 L in a mid-size FCV.  相似文献   

14.
Metal hydride material properties required for on-board hydrogen storage for use with automotive polymer electrolyte fuel cell systems are discussed. Thermodynamic relationships between enthalpy and entropy of sorption are determined such that the storage system can be thermally integrated with the fuel cell system and be refueled at reasonable H2 supply pressures of 50–200 atm. Simple criteria are developed for specifying minimum discharge kinetic rates needed to satisfy hydrogen demand on automotive duty cycles. Simple criteria are also developed for specifying minimum charge kinetic rates needed to refuel metal hydride tanks in reasonable time. Accessible intrinsic capacity and bulk density of the metal hydride are determined for the storage system to achieve system level targets for gravimetric and volumetric capacities. Based on these analyses, it is recommended that the storage media properties be measured on samples prepared by mixing the metal hydride with a high thermal conductivity material, and compacted to 600 kg m−3 bulk density. The compact should have a minimum effective thermal conductivity of 8.5 W m−1 K−1.  相似文献   

15.
The possibilities and limits of hydrogen for ground transportation are discussed. The state of development of the hydrogen infrastructure, of hydrogen storage means and of hydrogen drive systems including fuel cells are shown. The technical problems and their solutions in connection with metal hydride storage tanks in vehicles and the Daimler-Benz hydride vehicle program are described.  相似文献   

16.
Small hybrid wind systems are capable of storing and supplying power for residential applications. In this paper, the excess wind energy is converted into hydrogen by electrolysis and is stored in a metal hydride. Metal hydride beds are known for their high volumetric capacity compared to the compressed hydrogen storage, and offers hydrogen storage at a reasonable operating temperature and pressure. A system simulation model is developed in Matlab/Simulink platform for the dynamics of the metal hydride hydrogen storage system, which is charged by the wind energy. The thermal loads of the metal hydride storage system is met by passing water at ambient temperature for cooling the bed while hydrogen is being absorbed. The effect of the transient turbulent wind velocity profile on the storage system is analyzed. The thermal management of the storage system plays an important role in the overall design, and hence it is discussed in detail.  相似文献   

17.
Heat transfer in metal hydride bed significantly affects the performance of metal hydride reactors (MHRs). Enhancing heat transfer within the reaction bed improves the hydriding rate. This study presents performance analysis in terms of storage capacity and time of three different cylindrical MHR configurations using storage media LaNi5: a) reactor cooled with natural convection, b) reactor with a heat pipe on the central axis, c) reactor with finned heat pipe. This study shows the impact of using heat pipes and fins for enhancing heat transfer in MHRs at varying hydrogen supply pressures (2–15 bar). At any absorption temperature, hydrogen absorption rate and hydrogen storage capacity increase with the supply pressure. Results show that using a heat pipe improves hydrogen absorption rate. It was found that finned heat pipe has a significant effect on the hydrogen charge time, which reduced by approximately 75% at 10 bar hydrogen supply pressure.  相似文献   

18.
Different technologies possibly applicable for large-scale hydrogen storage in urban or industrial-complex areas have been comparatively evaluated, focusing on the facility-construction costs, the utility expense, and the ground area required for the facility for each technology. The specific technologies examined in this study are the storage in the form of compressed or liquefied gas, the storage using a metal hydride, and the storage using a clathrate hydrate. The common requirements for these technologies are the function of loading or unloading hydrogen gas at a rate up to 3000 Nm3/h and also the storage capacity of 6.48 × 106 Nm3 that enables continuous 90-day loading or unloading at the rate of 3000 Nm3/h. The storage using a clathrate hydrate is found to require the minimum ground area and, if the cool energy necessary for hydrate production is available from adjacent LNG facilities, the minimum annual depreciation + utility expense.  相似文献   

19.
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.  相似文献   

20.
Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications.With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus.In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized.In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号