共查询到20条相似文献,搜索用时 0 毫秒
1.
Azim Fitri Zainul Abidin Kee Shyuan Loh Wai Yin Wong Abu Bakar Mohamad Ifa Puspasari 《International Journal of Hydrogen Energy》2018,43(24):11047-11055
In this study, cobalt-doped carbon xerogel (Co-CX) was synthesised via sol-gel polymerisation of phenolic compounds (i.e., resorcinol, phenol and m-cresol) and formaldehyde, and this polymerisation was catalysed by cobalt nitrate and followed by a carbonisation process. The effect of the initial pH value (5.5, 6.5 and 7.5) as well as the type of carbon precursors on the structural properties of Co-CX was investigated via field emission scanning electron microscope (FESEM), Brunauer-Emmett-Teller (BET) and X-ray diffractometry (XRD). The catalytic activity of Co-CX for the oxygen reduction reaction (ORR) in 0.1 M KOH was studied using a rotating ring-disk electrode (RRDE) technique. The structural properties and ORR activities were affected by different initial pH values as well as the type of carbon precursor. A carbon precursor consisting of resorcinol-formaldehyde with an initial pH value of 7.5 exhibited the best catalytic activity. The initial pH plays an important role in promoting micro/mesopores. The FESEM and BET results revealed that Co doping promotes the formation of additional pores. The RRDE result indicated that Co-CX exhibited good catalytic activity that tends to favour a four-electron pathway. 相似文献
2.
Jun-Sheng Zheng Tian Tian Yuan Gao Qiang Wu Jian-Xin Ma Jian-Ping Zheng 《International Journal of Hydrogen Energy》2014
Buckypaper is a freestanding, self-supported and well defined membrane-like black thin film. We developed a buckypaper film containing a MWNTs-rich surface and a CNFs-rich surface. Pt nanoparticles supported on this film with an ultra-low Pt content, 0.05 mg/cm2, as a catalytic layer for oxygen reduction reaction (ORR) were synthesized by a sputtering process (Pt/BP-SP). The physical and chemical properties as well as electrochemical performance of this nanocomposite were studied. For comparison, Pt nanoparticles supported on buckypaper with a Pt content of 0.10 mg/cm2 were prepared by an electrodeposition process (Pt/BP-ED). The results proved that Pt/BP-SP possessed a smaller particle size and a more uniform distribution on buckypaper than Pt/BP-ED. Cyclic voltammetric investigation showed that Pt/BP-SP had a higher electrochemical surface area although its Pt content was lower than that of Pt/BP-ED. Tafel studies proved that Pt/BP-SP had a move positive equilibrium potential and a higher apparent exchange current density. Moreover, the results of linear sweep voltammetric (LSV) analysis exhibited that Pt/BP-SP had a higher ORR activity compared with Pt/BP-ED, and LSV at different rotation rates revealed that ORR on Pt/BP-SP electrode was a 4e− process. 相似文献
3.
Takafumi Ishii Takuya Maie Naofumi Kimura Yuki Kobori Yasuo Imashiro Jun-ichi Ozaki 《International Journal of Hydrogen Energy》2017,42(23):15489-15496
The use of carbon cathode catalysts in polymer electrolyte fuel cells instead of the current platinum catalysts is attracting increasing attention. We claim that two factors are important for enhancing the activity of carbon cathode catalysts in the oxygen reduction reaction (ORR): the formation of a nanoshell structure and co-doping with boron and nitrogen. Herein, we investigate the preparation and characterization of active ORR carbon catalysts that combine the above factors. Boron and nitrogen (BN)-doped nanoshell-containing carbon (BN-NSCC) was prepared by carbonizing a mixture of poly(furfuryl alcohol), cobalt phthalocyanine, melamine, and a trifluoroborane–methanol complex at 1000 °C. Transmission electron microscopy and X-ray photoelectron spectroscopy revealed the formation of nanoshell structures with distorted graphitic layers and the introduction of boron and nitrogen atoms, respectively. The ORR activity was evaluated in oxygen-saturated 0.5 mol dm?3 H2SO4 using Koutecky–Levich analysis. The BN-NSCC showed an eight to ten times higher ORR activity than undoped NSCC, with an increased number of electrons participating in the reaction. Tafel analysis revealed a change in the rate-determining step caused by BN-doping. Thus, the combination of a nanoshell structure and co-doping with boron and nitrogen was found to improve the ORR activity of carbon catalysts. 相似文献
4.
Qingxin Li Shaohui Zhang Wei Xuan Haikun Zhou Wenying Tian Xiaoting Deng Jingwen Huang Zhiyong Xie Feng Liu Xueduan Liu Yili Liang 《International Journal of Hydrogen Energy》2021,46(53):26886-26896
Microbial fabrication is eco-friendly for nobel-metal catalysts typically used in proton exchange membrane fuel cell (PEMFC). In our study, nano-Pd electrocatalysts were successfully prepared by using three Shewanellas as precursors through hydrogen reduction (200 °C) and carbonization (800 °C). The analysis revealed that the catalysts showed outstanding ORR electrocatalytic performance via a predominant four-electron oxygen reduction pathway in alkaline medium. The best performance was obtained for Pd/HNC-32, which showed a mass activity at 0.526 A mg?1, 3.78 times higher than that of commercial Pd/C. Shewanella putrefaciens CN-32 was a more effective Pd-adsorbent. The enhanced performance can be ascribed to the small Pd-particle size and uniform dispersion on microbial support, which results from stronger hydrophilicity of Shewanella putrefaciens CN-32. The content of nitrogen is another key to the performance of Pd/HNC-32. This study developed a promising strategy for screening microbial strains for electrocatalyst fabrication. 相似文献
5.
Runqiu Nie Xiangjie BoCharles Luhana Anaclet NsabimanaLiping Guo 《International Journal of Hydrogen Energy》2014
Nitrogen and sulfur dual doped-carbon nanotubes-mesoporous carbon (D-CNTs-MPC) composite is prepared simultaneously and is used in alkaline media as an electrocatalyst for oxygen reduction reaction (ORR). D-CNTs-MPC is synthesized by casting method using nano-CaCO3 as a template, and binuclear cobalt phthalocyanine hexasulfonate as a carbon, nitrogen and sulfur precursor as well as the catalyst for growth of CNTs. D-CNTs-MPC possesses short CNTs adhering to loosely packed carbon with mesopores. Moreover, nitrogen and sulfur are doped into the carbon framework without addition of other heteroatom-containing precursor. The electrochemical behavior shows that D-CNTs-MPC is an active, methanol-tolerant and stable electrocatalyst for ORR. 相似文献
6.
Joonhyeon Kang Sujin Byun Seunghoon Nam Suji Kang Taeho Moon Byungwoo Park 《International Journal of Hydrogen Energy》2014
The main challenge in fuel cells lies in improving slow oxygen reduction reaction (ORR) kinetics causing low conversion efficiencies. Here, we introduce the Au/CePO4-binary nanocomposites as effective oxygen reduction catalysts in alkaline media. The ORR activity comparable with Pt is achieved through the serial 4-electron reduction pathway. The bi-functionality of CePO4 is suggested to explain the remarkably enhanced activity on the Au/CePO4 nanocomposites. Significantly, the own catalytic activity of CePO4 for hydrogen peroxide is demonstrated, validating synergistic effects with Au for complete ORR. 相似文献
7.
Haoliang Li Hui-Juan ZhangShiyou Zheng Bin ZhaoJunhe Yang 《International Journal of Hydrogen Energy》2014
Impact of carbon pre-treatment on the catalytic activity and selectivity of its own and its relevant non-precious metal Co-based catalyst (carbon-supported cobalt diethylenetriamine, CoDETA/C) for oxygen reduction reaction is investigated. Three pre-treatment methods involving thermal treatment, H2O2-oxidation and KOH-activation are used in this paper. Electrochemical activity demonstrated by cyclic voltammograms and rotating ring disk electrode technique in O2-saturated electrolyte shows that pre-treatment step has a significant effect on the catalytic activity and selectivity of carbon and its Co-based catalyst: (1) for carbon sample, a KOH-activation gives the highest activity in acid medium, while a H2O2-oxidation in alkaline solution; and (2) for its Co-based catalyst, the as-ground gives the highest activity and selectivity in acid solution, while a KOH-activation in alkaline medium. Raman spectra indicate that pre-treatment can decrease the disorder of carbon matrix. X-ray diffraction shows that face-centered cubic α-Co phases are present and pre-treatment of carbon can decrease the size of metal Co dispersed on the catalyst surface. 相似文献
8.
Xiao Xu Tao Yuan Yingke Zhou Yawei Li Jiming Lu Xiaohui Tian Deli Wang Jie Wang 《International Journal of Hydrogen Energy》2014
Boron-doped graphene and nitrogen-doped graphene have been respectively synthesized by a facile thermal solid-state reaction of graphene oxide with boric acid and urea. The morphology and structure of the doped graphene have been characterized by the scanning electron microscopy, infrared spectroscopy, ultraviolet visible spectroscopy and X-ray photoelectron spectroscopy, while the electrocatalytic activity toward oxygen reduction reaction has been evaluated by the cyclic voltammetry. It has been shown that the morphology, structure, doping level and fashions of graphene could be finely tuned by the thermal treatment conditions, and which have substantial effects on the activity of oxygen reduction reaction. The boron-doped graphene and nitrogen-doped graphene calcined at 700 °C demonstrate excellent electrocatalytic oxygen reduction activities as the appropriate introduction of boron and nitrogen functional groups in graphene, which might be promising for low temperature fuel cell applications. 相似文献
9.
Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction
Wenpeng Ouyang Dongrong Zeng Xiang Yu Fangyan Xie Weihong Zhang Jian Chen Jing Yan Fangjing Xie Lei Wang Hui Meng Dingsheng Yuan 《International Journal of Hydrogen Energy》2014
Nitrogen-doped graphene is studied as a kind of non-noble metal catalyst for the oxygen reduction reaction in the cathode of fuel cells. Graphene is synthesized by pyrolyzing ion exchange resin and nitrogen doping is realized by a second pyrolysis step with nitrogen precursor. High resolution transmission electron microscopy proves the graphene is composed by 8–10 graphitic layers. The defect of graphene caused by nitrogen doping is detected by Raman spectra. The nitrogen group of the doped graphene is studied in detail with X-ray photoelectron spectroscopy spectra and a special type of nitrogen: valley-N is distinguished. The valley-N is proved to play an important role in the oxygen reduction reaction. Nitrogen content is found not directly related with the activity of the oxygen reduction reaction. 相似文献
10.
Cicero W.B. Bezerra Lei Zhang Hansan Liu Kunchan Lee Aldaléa L.B. Marques Edmar P. Marques Haijiang Wang Jiujun Zhang 《Journal of power sources》2007
This paper reviews over 120 papers regarding the effect of heat treatment on the catalytic activity and stability of proton exchange membrane (PEM) fuel cell catalysts. These catalysts include primarily unsupported and carbon-supported platinum (Pt), Pt alloys, non-Pt alloys, and transition metal macrocycles. The heat treatment can induce changes in catalyst properties such as particle size, morphology, dispersion of the metal on the support, alloying degree, active site formation, catalytic activity, and catalytic stability. The optimum heat-treatment temperature and time period are strongly dependent on the individual catalyst. With respect to Pt-based catalysts, heat treatment can induce particle-size growth, better alloying degree, and changes in the catalyst surface morphology from amorphous to more ordered states, all of which have a remarkable effect on oxygen reduction reaction (ORR) activity and stability. However, heat treatment of the catalyst carbon supports can also significantly affect the ORR catalytic activity of the supported catalyst. Regarding non-noble catalysts, in particular transition metal macrocycles, heat treatment is also important in ORR activity and stability improvement. In fact, heat treatment is a necessary step for introducing more active catalytic sites. For metal chalcogenide catalysts, it seems that heat treatment may not be necessary for catalytic activity and stability improvement. More research is necessary to improve our fundamental understanding and to develop a new strategy that includes innovative heat-treatment processes for enhancing fuel cell catalyst activity and stability. 相似文献
11.
Xianxia Yuan Hai-Chuan Kong Yi-Jun He Zi-Feng Ma Yong Yang Qian Li 《International Journal of Hydrogen Energy》2014
A family of non-precious metal catalysts, Co-PPy-TsOH/C, has been synthesized with different amount of pyrrole and p-toluenesulfonic acid (TsOH). Elemental contents of Co, N, C, S, H and O in the obtained catalysts have been measured with physicochemical techniques and the performance of these catalysts towards oxygen reduction reaction (ORR) have been evaluated with electrochemical techniques. Then, the results obtained have been discussed with principal component analysis and linear correlation analysis to find the correlation/anticorrelation between the composition and electrochemical properties. It is revealed that the used amount of pyrrole has much more apparent effect than TsOH on elemental contents in the Co-PPy-TsOH/C catalysts, while both of them influence the ORR activity and mechanism of the catalysts. Besides, the effects of the contents of each element on the electrochemical performance have also been analyzed to guide the future development of similar catalysts. 相似文献
12.
Hyung-Suk OhJong-Gil Oh Woong Hee LeeHyun-Jong Kim Hansung Kim 《International Journal of Hydrogen Energy》2011,36(14):8181-8186
Nitrogen modified carbon based catalysts for the oxygen reduction reaction (ORR) were synthesized using three different types of carbon, carbon black (CB), carbon nanotube (CNT) and platelet carbon nanofiber (P-CNF) with nitrogen containing organic precursors. The relationship between the ORR activity and the carbon nanostructure was explored using various electrochemical and physical characterization methods. It was found that the ORR activity was affected by the type and content of the nitrogen functional group instead of the carbon surface area. The formation of nitrogen functional group, in turn, strongly depends on the carbon nanostructure. Unlike the basal plane, the edge plane exposure provides the appropriate geometry for the nitrogen incorporation into carbon structure, resulting in high nitrogen content and high pyridinic-N and graphitic-N content, providing an active site for ORR. Therefore, the P-CNF based catalyst with the highest edge plane exposure has the highest ORR activity despite having the smallest surface area. 相似文献
13.
Yisi Liu Haibo Shen Hao Jiang Wenzhang Li Jie Li Yaomin Li Yang Guo 《International Journal of Hydrogen Energy》2017,42(18):12978-12988
Development of efficient electrocatalysts for the oxygen reduction reaction (ORR) is vitally important for the commercialization of metal–air batteries. In this work, we demonstrate a novel graphene coated/Co9S8 nanoparticles-embedded nitrogen doped porous carbon dodecahedron hybrid (Co9S8/NPCP@rGO) prepared by the pyrolysis and sulphuration of precursors composing of graphene oxide and zeolitic imidazolate-frameworks (ZIF). The Co9S8/NPCP@rGO hybrid is used as a highly efficient nonprecious metal electrocatalyst for oxygen reduction and exhibits more positive onset potential and half-wave potential, higher limiting current density, lower Tafel slope, and better durability and methanol tolerance in alkaline media in comparison to the commercial 20 wt.% Pt/C catalyst. The greatly improved electrocatalytic performance of Co9S8/NPCP@rGO can be attributed to the unique structure with Co9S8 nanoparticles dispersed uniformly inside nitrogen doped porous carbon matrix, and the synergistic effect between Co9S8/NPCP polyhedral hybrid and rGO. 相似文献
14.
Nalini P. Subramanian Xuguang LiVijayadurda Nallathambi Swaminatha P. KumaraguruHector Colon-Mercado Gang WuJong-Won Lee Branko N. Popov 《Journal of power sources》2009
Nitrogen-modified carbon-based catalysts for oxygen reduction were synthesized by modifying carbon black with nitrogen-containing organic precursors. The electrocatalytic properties of catalysts were studied as a function of surface pre-treatments, nitrogen and oxygen concentrations, and heat-treatment temperatures. On the optimum catalyst, the onset potential for oxygen reduction is approximately 0.76 V (NHE) and the amount of hydrogen peroxide produced at 0.5 V (NHE) is approximately 3% under our experimental conditions. The characterization studies indicated that pyridinic and graphitic (quaternary) nitrogens may act as active sites of catalysts for oxygen reduction reaction. In particular, pyridinic nitrogen, which possesses one lone pair of electrons in addition to the one electron donated to the conjugated π bond, facilitates the reductive oxygen adsorption. 相似文献
15.
Pd-coated manganese dioxide catalysts (Pd@MnO2) were synthesized by depositing Pd on the surface of β-MnO2 nanorod particles in aqueous solutions at room temperature. TEM, XRD and electrochemical characterizations indicated that the MnO2 nanorods were successfully coated with Pd particles when the Pd weight percentage was more than 4.6%. The activities of the Pd@MnO2 catalysts for oxygen reduction reaction (ORR) were investigated using a rotating disk electrode (RDE) and a rotating ring-disk electrode (RRDE). The ORR onset potentials on the Pd@MnO2 catalyst shifted positively for more than 250 mV compared with the MnO2 catalyst without Pd coatings. Both the ORR onset potentials and the limiting current density obtained by the RDE measurements on the Pd@MnO2 catalysts were close to those on the Pd black catalyst. The mass activity of the Pd@MnO2 catalysts (normalized by Pd mass) was 2.5 times higher than that of the Pd black catalyst. Based on the Tafel slopes of the Pd@MnO2 catalysts (which is about 60 mV dec−1 at low overpotentials), and based on the fact that the activation energies of the Pd@MnO2 catalysts are very close to the activation energies of the Pd catalysts, one may conclude that the small amount of Pd coating provides the primary ORR activity of the Pd@MnO2 catalysts. 相似文献
16.
Sisi Liu Chengwei Deng Lan Yao Hexiang Zhong Huamin Zhang 《International Journal of Hydrogen Energy》2014
A novel non-platinum oxygen reduction reaction (ORR) catalyst was synthesised by the pyrolysis of carbon-supported vitamin B12 under ammonia atmosphere. The resultant catalyst was characterised by transmission electron microscopy (TEM), scanning TEM (STEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) analyses. Results demonstrated that the catalyst had a spherical structure. XPS revealed that the nitrogen configuration was changed after pyrolysis, and nitrogen species played a key role in catalysing the ORR. The catalyst exhibited an enhanced ORR activity than commercial 20% Pt/C in alkaline media. The catalyst had an electron transfer number of 3.9, which was very close to the ideal theoretical value of 4. Moreover, the catalyst displayed superior methanol tolerance to Pt/C in alkaline medium, demonstrating its potential application as a cost-effective catalyst for direct methanol alkaline fuel cells. 相似文献
17.
Jiayi Jin Huimin Wu Shengfu Wang Yu Ding Shengyu Yin 《International Journal of Hydrogen Energy》2017,42(32):20579-20588
Different kinds of carbon nitride were successfully synthesized through pyrolyzing the precursors. Their physical properties were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. While the electrochemical properties were measured by cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The results showed that the sulfur-doped carbon nitride exhibited better electrochemical catalytic properties towards oxygen reduction reaction. Most importantly, the onset potential of sulfur-doped carbon nitride was 0.77 V (vs. RHE), which positively shifted 40 mV than that of the carbon nitride. The calculation of kinetics parameters showed that it occurred through an approximately four electron pathway with a lower Tafel slope (115 mV/decade). Furthermore, the sulfur-doped carbon nitride also presented excellent stability and methanol tolerance. 相似文献
18.
The purpose of this study is to develop a novel binary Iridium-Cobalt/C catalyst as a suitable substitute for platinum/C applied in proton exchange membrane fuel cells (PEMFCs). The carbon-supported IrCo catalysts were successfully synthesized using IrCl3 and C4H6CoO4 as the Ir and Co precursors respectively, in ethylene glycol (EG) refluxing at 120 °C. The nanostructured catalysts were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscope (TEM). Homogeneous catalyst particles supported on carbon showed a size of proximately 2 nm. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were conducted for the characterization of the catalyst performances. With a cathodic loading of 0.4 mgIr cm−2, 20%Ir-30%Co/C achieved a maximum power density of 501.6 mW cm−2 at 0.418 V, with a 50 cm2 H2/O2 single cell. Although such a performance is about 26% lower than commercial Pt/C catalyst, it is still helpful in terms of Pt replacement and cost reduction. 相似文献
19.
Sabina Yasmin Mohammad Shamsuddin Ahmed Seungwon Jeon 《International Journal of Hydrogen Energy》2017,42(2):1075-1084
An electrodeposition-approach for the synthesis of silver nanoflowers (AgNFs) on nitrogen doped carbon nanotubes (NCNTs) for the oxygen reduction reaction (ORR) in alkaline media has been developed. The as prepared material (NCNTs-AgNFs) has been characterized by various instrumental methods. The morphological analysis shows the unique rose-like AgNFs are placed onto the NCNTs with better dispersion. The higher population of AgNFs has also been observed onto NCNTs coated glassy carbon (GC) rather than bare GC plate. The X-ray photoelectron spectroscopy shows chemical reduction and N-doping has done successfully with the restoring sp2 domain in carbon network. The electrocatalytic activities have been verified using cyclic voltammetry (CV) and hydrodynamic voltammetry techniques in 0.1 M KOH electrolyte. The resulting catalyst system, NCNT-AgNFs, surpasses the performance of Pt/C, in terms of a kinetic current density, better fuel selectivity and durability. It is also noteworthy that the NCNT-AgNFs exhibits a four-electron reduction pathway for ORR with lowering H2O2 yield. The admirable performance of NCNT-AgNFs catalyst along with higher durability holds great potential for application in various fuel cells as cathode catalyst. 相似文献
20.
Yu-Syuan Chao Dah-Shyang Tsai An-Pang Wu Ling-Wei Tseng Ying-Sheng Huang 《International Journal of Hydrogen Energy》2013
We have prepared durable catalysts of CoSe2/N-carbon using low-cost raw materials, measured their activities, peroxide yields, stabilities in reducing molecular oxygen, and characterized their crystalline phases and morphology. CoSe2/N-carbon is featured with an active support, N-carbon, which by itself shows high stability as evidenced in its small activity decay. After 1000 CV cycles, the half-wave potential (E1/2) of N-carbon decreases from 0.667 V to 0.636 V in 0.5 M H2SO4. Loading of CoSe2 enhances the activity of N-carbon, when the samples were synthesized above 385 °C and formulated with the Se/Co ratio higher than 10. The higher activity is attributed to the pyrite phase of CoSe2. But the stability of pyrite CoSe2 is less than that of N-carbon. Corrosion during the stability test exposes the active sites of underlying N-carbon, which sustains the catalyst activity. Consequently the E1/2 value of the active CoSe2/N-carbon decreases moderately, from 0.711 V to 0.644 V after 1000 CV cycles. In contrast, the E1/2 value of CoSe2/C descends much more, from 0.681 V to 0.475 V. 相似文献