首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced.  相似文献   

2.
在一台单缸直喷式柴油机上研究了冷却废气再循环(EGR)对二甲醚(DME)/天然气(CNG)双燃料均质压燃(HCCI)燃烧过程和排放的影响.结果表明,EGR率加大,着火时刻滞后,放热速率降低,燃烧持续期延长,DME比例加大,着火始点提前,放热率峰值上升,燃烧持续期缩短,EGR率增大,发动机“失火”和爆震燃烧的DME比例增大,但“失火”和爆震燃烧之间的DME比例区间变宽,EGR可以拓宽HCCI发动机的工况范围.对应不同比例的EGR,有一个热效率最佳的DME比例区域.HC排放和CO排放随EGR率的增高而增加,随DME比例的增大而降低.NO。排放在不发生爆震的情况下保持在极低的水平.因此,控制DME比例和EGR率是控制DME/CNG双燃料HCCI发动机燃烧过程、性能和排放的关键。  相似文献   

3.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

4.
《Energy》2006,31(14):2665-2676
This paper focuses on the effects of internal and cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI). The use of fuel injection before the top center (TC) of an exhaust stroke and the negative valve overlap (NVO) to form the homogeneous mixture achieves low NOx and smoke emissions HCCI. Internal and external EGR are combined to control the combustion. Internal exhaust gas recirculation (IEGR) benefits to form a homogeneous mixture and reduces smoke emission further, but lower the high load limits of HCCI. Cooled external EGR can delay the start of combustion (SOC) effectively, which is very useful for high cetane fuel (diesel) HCCI because these fuels can easily self-ignited, making the SOC earlier. External EGR can avoid the knock combustion of HCCI at high load, which means it can expand the high load limit. HCCI maintains low smoke emission at various EGR rates and various loads compared with a conventional diesel engine because there are no fuel-rich volumes in the cylinder.  相似文献   

5.
The lowered combustion temperature in diesel engines is capable of reducing nitrogen oxides and soot simultaneously, which can be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion. However, the fuel efficiency of the low‐temperature combustion (LTC) cycles is commonly compromised by the high levels of hydrocarbon and carbon monoxide emissions. More seriously, the scheduling of fuel delivery in HCCI engines has lesser leverage on the exact timing of auto‐ignition that may even occur before the compression stroke is completed, which may cause excessive efficiency reduction and combustion roughness. New LTC control strategies have been explored experimentally to achieve ultralow emissions under independently controlled EGR, intake boost, exhaust backpressure, and multi‐event fuel‐injection events. Empirical comparisons have been made between the fuel efficiencies of LTC and conventional diesel cycles. Preliminary adaptive control strategies based on cylinder pressure characteristics have been implemented to enable and stabilize the LTC when heavy EGR is applied. The impact of heat‐release phasing, duration, shaping, and splitting on the thermal efficiency has also been analyzed with engine cycle simulations. This research intends to identify the major parameters that affect diesel LTC engine thermal efficiency. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Homogeneous Charge Compression Ignition (HCCI) combustion is a combustion concept which offers simultaneous reductions in both NOx and soot emissions from internal combustion engines. In light of increasingly stringent diesel emissions limits, research efforts have been invested into HCCI combustion as an alternative to conventional diesel combustion. This paper reviews the implementation of HCCI combustion in direct injection diesel engines using early, multiple and late injection strategies. Governing factors in HCCI operations such as injector characteristics, injection pressure, piston bowl geometry, compression ratio, intake charge temperature, exhaust gas recirculation (EGR) and supercharging or turbocharging are discussed in this review. The effects of design and operating parameters on HCCI diesel emissions, particularly NOx and soot, are also investigated. For each of these parameters, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.  相似文献   

7.
均质混合气压燃(HCCI)高负荷拓展是内燃机燃烧领域的一个难题,火花点火激发均质压燃(SICI)组合燃烧可以作为汽油机中高负荷区域的高效燃烧模式,实现HCCI与火花点火(SI)燃烧的衔接。在试验台架上通过改变配气相位及外部EGR循环实现了内外EGR组合策略下的SICI组合燃烧,研究了EGR策略对SI-CI组合燃烧的影响。结果表明,内部EGR有利于压燃的发生,随着内部EGR的增加,压燃比例增加,燃烧速度加快,循环波动减小,CO和UHC排放减少,SICI组合燃烧能够在更高的EGR率条件下稳定工作,理论空燃比SICI组合燃烧的工况范围得到拓展。  相似文献   

8.
This article is a condensed overview of a dimethyl ether (DME) fuel application for a compression ignition diesel engine. In this review article, the spray, atomization, combustion and exhaust emissions characteristics from a DME-fueled engine are described, as well as the fundamental fuel properties including the vapor pressure, kinematic viscosity, cetane number, and the bulk modulus. DME fuel exists as gas phase at atmospheric state and it must be pressurized to supply the liquid DME to fuel injection system. In addition, DME-fueled engine needs the modification of fuel supply and injection system because the low viscosity of DME caused the leakage. Different fuel properties such as low density, viscosity and higher vapor pressure compared to diesel fuel induced the shorter spray tip penetration, wider cone angle, and smaller droplet size than diesel fuel. The ignition of DME fuel in combustion chamber starts in advance compared to diesel or biodiesel fueled compression ignition engine due to higher cetane number than diesel and biodiesel fuels. In addition, DME combustion is soot-free since it has no carbon–carbon bonds, and has lower HC and CO emissions than that of diesel combustion. The NOx emission from DME-fueled combustion can be reduced by the application of EGR (exhaust gas recirculation). This article also describes various technologies to reduce NOx emission from DME-fueled engines, such as the multiple injection strategy and premixed combustion. Finally, the development trends of DME-fueled vehicle are described with various experimental results and discussion for fuel properties, spray atomization characteristics, combustion performance, and exhaust emissions characteristics of DME fuel.  相似文献   

9.
Homogenous charge compression ignition (HCCI) engines feature high thermal efficiency and ultralow emissions compared to gasoline engines. However, unlike SI engines, HCCI combustion does not have a direct way to trigger the in-cylinder combustion. Therefore, gasoline HCCI combustion is facing challenges in the control of ignition and, combustion, and operational range extension. In this paper, an active fuel design concept was proposed to explore a potential pathway to optimize the HCCI engine combustion and broaden its operational range. The active fuel design concept was realized by real time control of dual-fuel (gasoline and n-heptane) port injection, with exhaust gas recirculation (EGR) rate and intake temperature adjusted. It was found that the cylinderto- cylinder variation in HCCI combustion could be effectively reduced by the optimization in fuel injection proportion, and that the rapid transition process from SI to HCCI could be realized. The active fuel design technology could significantly increase the adaptability of HCCI combustion to increased EGR rate and reduced intake temperature. Active fuel design was shown to broaden the operational HCCI load to 9.3 bar indicated mean effective pressure (IMEP). HCCI operation was used by up to 70% of the SI mode load while reducing fuel consumption and nitrogen oxides emissions. Therefore, the active fuel design technology could manage the right fuel for clean engine combustion, and provide a potential pathway for engine fuel diversification and future engine concept.  相似文献   

10.
Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies.  相似文献   

11.
在汽油机上实施HCCI的技术策略   总被引:2,自引:0,他引:2  
均质混合气压燃(HCCI)燃烧方式,是一种克服常规柴油机和汽油机缺点、集常规汽油机和柴油机优点于一体的新概念燃烧。本文分析了汽油机实施HCCI的可行性,介绍了HCCI发动机实用化所面临的问题,提出了双工作模式的折衷方案:在中低负荷工况实施HCCI,而在大负荷工况和冷起动工况恢复常规发动机工作方式。推荐可变压缩比(VCR)方案、可变废气再循环率(EGR)方案、可变排气门关闭时刻方案,以及废气再循环滚流分层充气方案等。为尽快在汽油机上实施HCCI燃烧方式指出了技术方向。  相似文献   

12.
Homogeneous charge compression ignition (HCCI) combustion enables internal combustion engines to achieve higher thermal efficiency and lower NOxNOx emission than with conventional combustion systems. Controlling the ignition timing in accordance with the operating conditions is crucial for utilizing HCCI combustion engines. Adding hydrogen-containing gas is known to retard the autoignition of dimethyl ether (DME) considerably. The effective ignition control by hydrogen can expand the operation range of equivalence ratios and engine loads in HCCI combustion. This research investigated the mechanisms in the ignition control by the chemical kinetics analysis. The results show that the retarded ignition can be attributed to a consumption of OH by hydrogen during low-temperature oxidation of DME. The decreased OH concentration leads to retarded heat release and delays the onset of the high-temperature oxidation.  相似文献   

13.
二甲醚均质压燃燃烧过程的试验研究   总被引:21,自引:8,他引:21  
在一台单缸直喷柴油机上进行了二甲醚(DME)均质压燃(HCCl)燃烧过程的试验.研究结果表明,进气中加入30%的惰性气体CO2,发动机实现HCCl运转的负荷范围从0.05MPa扩展到0.35MPa.二甲醚在HCCl模式下表现出明显的双阶段着火特性,增加惰性气体的浓度,第一阶段着火始点滞后,燃烧放热峰值降低,燃烧持续期延长.排放测试表明,HCCl模式下发动机的NOx排放接近于零,可实现无碳烟排放,但CO和HC排放较高.  相似文献   

14.
HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.  相似文献   

15.
In Homogeneous Charge Compression Ignition (HCCI) combustion, a lean premixed charge combusts simultaneously in multiple sites. Utilizing highly diluted mixtures, and lack of any significant flame propagation, in-cylinder NOx formation is reduced. Making HCCI engine a feasible alternative to conventional engines requires several challenges to be resolved. Combustion timing control is one of the most important of these items. It should be done in order that heat is released at the most optimum phasing for efficiency and emissions. In this study, a Waukesha Cooperative Fuel Research (CFR) single cylinder research engine was used to be operated in HCCI combustion mode fueled by natural gas and n-heptane. The main goal of the experiments was to investigate the possibility of controlling combustion phasing and combustion duration using various Exhaust Gas Recirculation (EGR) fractions. For the analysis of the results, a modified apparent heat release model was developed. The influence of EGR on emissions was discussed. Results indicate that applying EGR reduces mean charge temperature and has profound effect on combustion phasing, leading to a retarded Start of Combustion (SOC) and prolonged burn duration. Heat transfer rate decreases with EGR addition. Under examined condition EGR addition improved fuel economy, reduced NOx emissions and increased HC and CO emissions.  相似文献   

16.
废气再循环对二甲基醚均质压燃燃烧过程影响的试验研究   总被引:4,自引:1,他引:4  
在一台单缸发动机上进行了废气再循环(EGR)对二甲基醚(DME)均质压燃(HCCI)燃烧过程影响的试验研究。结果表明,EGR比例小于20%对运行最大负荷工况范围影响不大;采用高比例EGR可以拓宽DME均质压燃运行工况范围,随着EGR率增大,HCCI运行的最大负荷工况增大,着火燃烧时刻推迟,燃烧放热率降低,缸内最大爆发压力降低,发动机热效率增大;EGR率小于75%,HC排放略有降低或相当,EGR率为75%时,HC排放显著增加;EGR率大于25%,随着EGR率增加,CO排放增大,小负荷工况尤其明显,在中高负荷工况,EGR率对CO排放影响较小。  相似文献   

17.
DME/LPG燃料比例实时优化的HCCI燃烧控制新方法   总被引:2,自引:0,他引:2  
根据燃料设计的思想,提出了混合燃料比例实时优化的HCCI燃烧控制新方法。在一台2135柴油机上,通过燃料成分设计(DME/LPG混合燃料)、混合气成分设计(进气添加二氧化碳)、发动机参数调整(改变压缩比)等多种模式对二甲醚HCCI燃烧进行了研究和比较。试验结果表明,在不同工况下实时进行DME/LPG比例优化,通过改变燃料的理化特性和可燃混合气的成分,实现了HCCI着火与燃烧的有效控制,能够显著拓展二甲醚HCCI燃烧的运行负荷范围,并且各个工况下热效率最高、HC和CO排放最低。  相似文献   

18.
Dimethyl ether (DME) and n-pentanol can be derived from non-food based biomass feedstock without unsettling food supplies and thus attract increasing attention as promising alternative fuels, yet some of their unique fuel properties different from diesel may significantly affect engine operation and thus limit their direct usage in diesel engines. In this study, the influence of n-pentanol, DME and diesel blends on the combustion performance and emission characteristics of a diesel engine under low-temperature combustion (LTC) mode was evaluated at various engine loads (0.2–0.8 MPa BMEP) and two Exhaust Gas Recirculation (EGR) levels (15% and 30%). Three test blends were prepared by adding different proportions of DME and n-pentanol in baseline diesel and termed as D85DM15, D65P35, and D60DM20P20 respectively. The results showed that particulate matter (PM) mass and size-resolved PM number concentration were lower for D85DM15 and D65P35 and the least for D60DM20P20 compared with neat diesel. D60DM20P20 turned out to generate the lowest NOx emissions among the test blends at high engine load, and it further reduced by approximately 56% and 32% at low and medium loads respectively. It was found that the combination of medium EGR (15%) level and D60DM20P20 blend could generate the lowest NOx and PM emissions among the tested oxygenated blends with a slight decrease in engine performance. THC and CO emissions were higher for oxygenated blends than baseline diesel and the addition of EGR further exacerbated these gaseous emissions. This study demonstrated a great potential of n-pentanol, DME and diesel (D60DM20P20) blend in compression ignition engines with optimum combustion and emission characteristics under low temperature combustion mode, yet long term durability and commercial viability have not been considered.  相似文献   

19.
Homogeneous charge compression ignition (HCCI) is a promising technique to achieve high thermal efficiency and clean exhaust with internal combustion engines. However, the difficulty in ensuring optimal ignition timing control prevents its practical application. Previous research has shown that adjusting the proportion of dimethyl ether (DME) and hydrogen-containing methanol-reformed gas (MRG) can control the ignition timing in an HCCI combustion engine fueled with the two fuels. As both DME and MRG can be produced in endothermic methanol reforming reactions, onboard reforming utilizing the exhaust gas heat can recover the waste heat from the engine. A very high overall thermal efficiency can be achieved by combining the high engine efficiency with HCCI and the waste heat recovery. This research investigates the basic characteristics of methanol reforming in a reactor tube with different catalysts with the aim to produce fuels for the HCCI combustion system.  相似文献   

20.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号