首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, the environmental problems caused by the burning of fossil fuels as vehicle fuel have become more and more serious in the world. Many countries are carrying out the research on the alternative energy sources and the clean energy. Meanwhile, China has begun to focus on the development of the gas mixture containing hydrogen as the vehicle fuel, mainly hydrogen enriched compressed natural gas (HCNG) and coke oven gas (COG). Application status of HCNG and COG as the vehicle fuel in China were reviewed and their existing problems were analyzed. The analysis results shows that the relevant regulations standards of HCNG vehicle, COG vehicle and their refueling stations have not been formulated and unified yet and the optimal hydrogen ratio of the HCNG requires further experimental investigation and theoretical analysis. In addition, as a country with substantial COG wasted, China can make better use of the wasted hydrogen contained in COG to realize the miniaturization and closed production of the COG without pollution. HCNG and COG as vehicle fuel are beneficial for the development of the hydrogen energy, which can alleviate the crisis of global energy shortage and effectively reduce the production and emission of sulfur oxides. Therefore, the prospects of HCNG and COG as the vehicle fuel are good in China.  相似文献   

2.
The present study was carried out to assess the possibility of using the HCNG in the commercially available CNG vehicles, as the available literature indicated the benefits of adding hydrogen to CNG in small percentages by volume, leading to improved combustion characteristics of CNG and yielding sizeable benefits, regarding improved engine performance and reduced engine emissions in automotive applications. In the present study, a commercially available CNG manifold carburation kit, commonly known as “sequential injection” in the market, is evaluated for its operation characteristics, on a Spark Ignited (SI), MPFI automotive engine, of a mass-produced passenger vehicle, converted for gas operation, using, gasoline, CNG, HCNG 10% and HCNG 18% as fuels. In the study, the following performance parameters, torque, power, thermal efficiency, brake specific energy consumption (BSEC), lambda, engine oil temperature, exhaust gas species were measured. After exhaustive engine testing, a comparison of engine performance emission characteristics for gasoline, CNG and HCNG 10% and HCNG 18% is presented. The engine performance using the optimized MAP tables demonstrated torque and power improvements for HCNG 10% and HCNG 18% in comparison to CNG. The torque benefits up-to 6% and power benefits up-to 4% were observed. The fuel energy consumption was measured to be reduced, and improvement in fuel conversion efficiency was also observed. Hydrogen substitution in CNG helped in reducing CO, HC, CO2 emissions for HCNG in comparison to CNG. Increase in NOx emission was observed for HCNG in comparison with CNG. Superior engine emission characteristics in comparison to gasoline and CNG is also demonstrated. The commercially available sequential gas manifold carburation was found to be suitable for HCNG 10% and HCNG 18%.  相似文献   

3.
The idle performance of an 11-L, 6-cylinder engine equipped with a turbocharger and an intercooler was investigated for both compressed natural gas (CNG) and hydrogen-blended CNG (HCNG) fuels. HCNG, composed of 70% CNG and 30% hydrogen in volume, was used not only because it ensured a sufficient travel distance for each fueling, but also because it was the optimal blending rate to satisfy EURO-6 emission regulation according to the authors' previous studies. The engine test results demonstrate that the use of HCNG enhanced idle combustion stability and extended the lean operational limit from excess air ratio (λ) = 1.5 (CNG) to 1.6. A decrease of more than 25% in the fuel consumption rate was achieved in HCNG idle operations compared to CNG. Total hydrocarbon and carbon monoxide emissions decreased when fueled with HCNG at idle because of the low carbon content and enhanced combustion characteristics. In particular, despite hydrogen enrichment, less nitrogen oxides (NOx) were emitted with HCNG operations because the amount of fuel supplied for a stable idle was lower than with CNG operations, which eventually induced lower peak in-cylinder combustion temperature. This low HCNG fuel quantity in idle condition also induced a continuous decrease in NOx emissions with an increase in λ. The idle engine test results also indicate that cold-start performance can deteriorate owing to low exhaust gas temperature, when fueled with HCNG. Therefore, potential solutions were discussed, including combustion strategies such as retardation of spark ignition timing combined with leaner air/fuel ratios.  相似文献   

4.
Hydrogen and Compressed Natural Gas are great alternatives to the pure fossil fuels. Many researches confirm the advantages of using hydrogen and natural gas blended together for the internal combustion engine in both areas of improving performances and reducing emission levels. In a short to medium range terms, the air pollution throughout the globe could be significantly reduced by using HCNG in the internal combustion engine and in many other applications with the substitution of using HCNG as a main source of fuel or as a secondary source of fuel such as the dual fuel operation system in the diesel vehicle.  相似文献   

5.
Hydrogen is since long seen as an outstanding candidate for an environmentally acceptable, future aviation fuel. Given that most comprehensive studies on its use in aviation were performed over two decades ago, the current article evaluates its potential as a fuel for long range transport aircraft at current and future technology levels. The investigations show that hydrogen has the potential to reduce the energy utilisation of long range transport aircraft by approximately 11%. The use of hydrogen namely allows a much smaller wing area and span since the wing size is not restricted by its fuel storage capacity. At a given price per unit energy content, the smaller wings lead to a reduction of around 30% in take-off gross weight and 3% in direct operating costs for a given fuel price per energy content. The hydrogen-fuelled aircraft are furthermore slightly more sensitive to a possible reduction in operating empty weight in the future and 20% less sensitive to further improvements in engine thrust specific fuel consumption.  相似文献   

6.
The present paper analyzes an innovative energy system based on a hydrogen station, as the core of a smart energy production center, where the produced hydrogen is then used in different hydrogen technologies adopted and installed nearby the station. A case study analysis has been proposed and then investigated, with a station capacity of up to 360 kg of hydrogen daily generated, located close to a University Campus. A hydrogen mobility network has been included, composed of a fuel cell hydrogen fleet of 41 vehicles, 43 bicycles, and 28 fuel cell forklifts. The innovative proposed energy system needs to meet also a power and heat demand for a student housing 5400 m2 building of the University Campus. The performance of the system is presented and investigated, including technical and economic analyses, proposing a hydrogen refueling station as an innovative alternative fuel infrastructure, called Multi-modular Hydrogen Energy Station, marking its great potential in future energy scenarios.  相似文献   

7.
In the future, hydrogen-based stationary and portable fuel cell systems can help supply some or all of the power demanded with additional advantages of higher reliability, lower emissions, independence from the general grid, and cogeneration capability. In order to understand how to prepare the future for this technology, this paper describes a thorough investigation of past alternative stationary and portable power projects in order for an assessment of the opportunities for stationary and portable fuel cell markets, as well as interactions with transportation hydrogen systems. The lessons learned from the programs are used to establish best practices and recommendations for a hydrogen strategy that addresses opportunities for hydrogen in power generation systems, as well as to make recommendations for market transformation within the hydrogen fuel cell industry.  相似文献   

8.
The objective of this study is to evaluate the power, efficiency and emissions of an electronic-controlled single-cylinder engine fueled with pure natural gas and natural gas–hydrogen blends, respectively. Replacing the nature gas with hydrogen/methane blend fuels was found to have a significant influence on engine performance. The effects of excess air ratio and spark timing were discussed. The results show that under certain engine conditions the maximum cylinder gas pressure, maximum heat release rate increased with the increase of hydrogen fraction. The increase of hydrogen fraction in the blends contributed to the increase of NOx and the decrease of HC and CO. The brake specific fuel consumption decreased with the increase of hydrogen fraction. Using HCNG at relatively leaner fuel–air mixtures and retarded spark timing totally improved the engine emissions without incurring the performance penalty.  相似文献   

9.
Diesel fuelled engines emit higher levels of carbon dioxide and other harmful air pollutants (such as noxious gases and particulates) per litre of fuel than gasoline engines. This fact, combined with the recent diesel emission scandal and the rumours of more widespread cheating by automotive manufacturers have initiated a long discussion about the future and sustainability of diesel engines.Improving the compression ignition engine is a direct way of going green. Reducing the harmful emissions can be achieved by future developments in the engine technology but also the implementation of alternative fuels. Hydrogen is a renewable, high-efficient and clean fuel that can potentially save the future of diesel-type engines. The evolution of high-efficiency renewable hydrogen production methods is the most important path for the start of a new hydrogen era for the compression ignition engine that can improve its sustainability and maximum efficiency.This paper provides a detailed overview of hydrogen as a fuel for compression ignition engines. A comprehensive review of the past and recent research activities on the topic is documented. The review focuses on the in-cylinder combustion of hydrogen either as a primary fuel or in dual fuel operation. The effects of injection strategies, compression ratio and exhaust gas recirculation on the combustion and emission characteristics of the hydrogen fuelled engine are fully analysed. The main limitations, challenges and perspectives are presented.  相似文献   

10.
Non-Conventional Energy Sources, such as solar and hydrogen energy will remain available for infinite period. One of the reasons of great worry for all of us is reducing sources of conventional energies. The rate of fossil fuel consumption is higher than the rate of the fossil fuel production by the nature. The results will be the scarcity of automobile fuel in the world which will create lot of problems in transport sector. The other aspect is pollution added by these sources in our environment which increases with more use of these sources, resulting in the poor quality of life on this planet. There is constant search of alternate fuel to solve energy shortage which can provide us energy without pollution.Hence most frequently discussed source is hydrogen which when burnt in air produces a clean form of energy. In the last one decade hydrogen has attracted worldwide interest as a secondary energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and transportation of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel, richest in energy per unit mass and unlike electricity, it can be easily stored. Hydrogen gas is now considered to be the most promising fuel of the future. In future it will be used in various applications, e.g. it can generate Electricity, useful in cooking food, fuel for automobiles, hydrogen powered industries, Jet Planes, Hydrogen Village and for all our domestic energy requirements.Hydrogen as a fuel has already found applications in experimental cars and all the major car companies are in competition to build a commercial car and most probably they may market hydrogen fuel automobiles in near future but at a higher cost compared to gasoline cars but it is expected that with time the cost of hydrogen run cars will decrease with time. Long lasting, light and clean metal hydride batteries are already commercial for lap top computers. Larger capacity batteries are being developed for electrical cars. Hydrogen is already being used as the fuel of choice for space programmes around the world. It will be used to power aerospace transports to build the international space station, as well as to provide electricity and portable water for its inhabitants. Present article deals with the storage and applications of hydrogen in the present energy scenario.  相似文献   

11.
As a carbon-free molecule, ammonia has gained great global interest in being considered a significant future candidate for the transition toward renewable energy. Numerous applications of ammonia as a fuel have been developed for energy generation, heavy transportation, and clean, distributed energy storage. There is a clear global target to achieve a sustainable economy and carbon neutrality. Therefore, most of the research's efforts are concentrated on generating cost-effective renewable energy on a large scale rather than fossil fuels. However, storage and transportation are still roadblocks for these technologies, for example, hydrogen technologies. Ammonia could be replaced as a viable fuel for a clean and sustainable future of global energy. More efforts from governments and scientists can lead to making ammonia a clean energy vector in most energy applications. In this review, ammonia synthesis was assessed, including conventional Haber–Bosch technology. Current hydrogen technologies as the key parameters for ammonia generation are also evaluated. The role of ammonia as a hydrogen-based fuel and generation roadmap are discussed for future utilization of energy mix. Further, ammonia generation processes are addressed in depth, including blue and green ammonia generation. A survey of ammonia synthesis catalytic materials was conducted and the role of catalyst materials in ammonia generation was compared, which showed that the Ru-based catalyst generated the maximum ammonia after 20 h of starting experiment. An end-use plan for using ammonia as a clean energy fuel in vehicles, marines, gas turbines as well as fuel cells, is briefly discussed to recognize the potential applications of ammonia use. The practical and future end-use vision of energy sources is proposed to achieve great benefits at low carbon emissions and costs. This review can provide prospective knowledge of large-scale aspects and environmental considerations of ammonia. Herein, we conclude that ammonia will become the “clean energy carrier link” that will achieve the global energy and economy sustainability targets.  相似文献   

12.
Hydrogen and fuel cell vehicles are often discussed as crucial elements in the decarbonisation of the transport systems. However, in spite of the fact that hydrogen and fuel cell vehicles have a long history, they are still seen only as a long-term mobility option. The major objective of this paper is to analyse key barriers to the increasing use of hydrogen and fuel cell vehicles. A special focus is put on their economic performance, because this will be most crucial for their future deployment. Mobility costs are calculated based on the total cost of ownership, and future developments are analysed based on technological learning. The major conclusion is that to achieve full benefits of hydrogen and fuel cells in the transport sector, it is necessary to provide stabile, long-term policy framework conditions, as well as to harmonize actions across regions to be able to take advantage of economies of scale.  相似文献   

13.
The experimental investigation was carried out on a multi-cylinder spark ignition (SI) engine fuelled with compressed natural gas (CNG), hydrogen blended CNG (HCNG) and hydrogen with varying load at 1500 rpm in order to perform comparative exergy analysis. The exergy analysis indicates that work exergy, heat transfer exergy and exhaust exergy were the highest with hydrogen at all loads due to its high flame temperature, low quenching distance, and high flame speed. The engine's exergy efficiency was the highest with hydrogen (34.23%), and it was about 24.23% and 24.08% with CNG and HCNG respectively at high load (20.25 kW). This indicates a higher potential of hydrogen to convert chemical energy input of fuel into heat and then power output. The exergy destruction was observed minimum with hydrogen at all loads, and it was drastically reduced at high loads. The combustion irreversibility which was calculated using species present during combustion, was the main contributor to exergy destruction, and it decreased with hydrogen. The minimum combustion irreversibility was 11.75% with hydrogen, followed by HCNG and CNG with 16.46% and 18.88% respectively at high load. The high quality of heat due to high in-cylinder temperature and low entropy generation during combustion caused by less number of chemical species in hydrogen combustion are the main reasons for lower combustion irreversibility with hydrogen.  相似文献   

14.
Hydrogen is potentially the fuel of the future, with the transition to a hydrogen economy driven by the concerns about the climate change and the depletion of fossil fuel resources. Hydrogen is better than almost all other fuels when the fuels are evaluated on the basis of several metrics, including safety and versatility of use. Hydrogen is also presumed to have a superior motivity factor, a performance measure arising out of a combination of acceleration and drag forces. The motivity factor is quantified on the basis of the gravimetric and volumetric energy densities of a fuel. The present paper offers a refinement of the motivity factor which incorporates the effects of the mass of the storage matrix in these energy densities. It is shown that other fuels may have higher motivity factors than hydrogen when quantified on the basis of these refinements.  相似文献   

15.
Last three decades, costumers and manufacturers of automotive sector have been influenced positively by Hydrogen and fuel cells (FCs). The main goal of automakers can be pointed as minimizing the fuel consumption and exhaust emissions while improving the range limits, energy efficiency and latest technology adaptation. Therewithal, electric assisted propulsion systems added to vehicles and are called as electric vehicles (EVs). For that matter, Battery Electric Vehicles (BEVs) and hydrogen Fuel Cell Electric Vehicles (FCEVs) have become the focus of researchers and producers. In this mini foreseen review, overview of the next quarter century vision of FCEVs are expressed and discussed by the helped of previous researches and with future forecast reports. The introduction part is summarized the general approach and future expectations of FCs in detailed. Technical overview is represented for FCs and FCEVs in terms of current state of technology to foreseen expectancy. Infrastructure analysis and future aspects overview part is also discussed for sector's perspective on FCEVs. The near future perspective of the FCEVs, which is seen as the next step in EVs, is discussed in detail in the next quarter century vision. Authors concluded that, between the 2030s-2050s, hydrogen FCEVs will continue their rising demand scale under the circumstances of decreasing expensive technology; enhanced energy optimization; extended range limits and increasing hydrogen refueling stations.  相似文献   

16.
In this study, an overview has been presented a classification of the vehicles using hydrogen with different ways. The using of hydrogen in vehicles has been categorized into two main categories as designs in which hydrogen is burned and energy is generated by conversion to electricity. The designs of internal combustion vehicles with using hydrogen via burning, the designs of the fuel cell vehicles that using hydrogen by converting into electricity and their hybrid versions have been introduced. In the automotive industry, the structure and future advantages of hydrogen fuel cell electric vehicles have been handled in a separate title. Onboard storage, safety, the capital cost and operating cost of the different design of vehicles have been analyzed rigorously.  相似文献   

17.
The article contains examples about hydrogen research and development progress in different countries: Czech Republic, Poland, Romania, Russia and Ukraine. Each chapter describes a specific situation for a country and one of them describes some aspects from Germany for comparison with one of international leaders. The examples described into articles are not aleatory. The intention of the authors is to give to the reader the possibility to understand the concrete examples about what means the state of hydrogen and fuel cell research and innovation in the Central and Eastern European countries. The chapters dedicated to Czech Republic, Poland, and Romania, reveal the commitment of these countries in this adventure, often viewed today as a subject of very advanced countries. The specific situation in the Russia Federation describes a strong background, an uncertain present and a questionable future for the hydrogen and fuel cell technology. Development of hydrogen technologies and fuel cells in Ukraine have a long history, also. All of that, in the EU context, by voice of the main stakeholders, considered the hydrogen and fuel cell a decisive issue, with economic and societal ramifications.  相似文献   

18.
杨辉  曾文展 《内燃机》2010,(3):28-30
采用了一套定压配比燃料供给系统,通过向缸内直接喷射混合气,经电控系统精确控制喷射量,对天然气掺氢的发动机性能进行分析研究。结果表明,发动机燃用天然气掺氢燃料通过定压配比直喷技术,可以提高充气效率,与纯天然气发动机相比能够提高发动机动力和排放性能。  相似文献   

19.
The ‘Hydrogen Economy’ is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen FCVs in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen FCVs market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced.  相似文献   

20.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号