首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A water-splitting reactor yielding hydrogen and oxygen was designed with a titanium oxide (TiO2) nanotube array photoelectrode vertically grown on a titanium substrate. The TiO2 nanotube arrays were made by the method of anodization and annealed in an oxygen atmosphere. Hydrogen gas was collected from the reactor and the exact amount of hydrogen gas evolved from the photoanode was analyzed. The relationship between the amount of hydrogen evolution and three key factors, viz. the tube length, tube structure and crystal structure, was investigated.  相似文献   

2.
Highly efficient water splitting electrode based on uniform platinum (Pt) nanoparticles on self-organized TiO2 nanotube arrays (TNTAs) was prepared by a combination of multi-step electrochemical anodization with facile photoreduction process. Uniform platinum (Pt) nanoparticles with an average diameter of 8 nm are distributed homogeneously on nanoporous top layer and underneath TiO2 nanotube wall. In comparison to pristine TNTAs, Pt@TNTAs show substantially enhanced photocurrent density and the incident photon-to-current conversion efficiency (IPCE) in the entire wavelength window. The maximum photocurrent density and IPCE from the optimized Pt@TNTAs photoelectrode (Pt, ~1.57 wt%) were about 24.2 mA cm−2 and 87.9% at 350 nm, which is much higher than that of the pure nanotubes sample (16.3 mA cm−2 and 67.3%). The resultant Pt@TNTAs architecture exhibited significantly enhanced photoelectrochemical activities for solar water splitting with hydrogen evolution rate up to 495 μmol h−1 cm−2 in 2 M Na2CO3 + 0.5 M ethylene glycol under the optimal external bias of −0.3 VSCE.  相似文献   

3.
Cu(OH)2/TNAs photocatalyst was prepared by loading Cu(OH)2 nanoparticles on TiO2 nanotube arrays (TNAs) using a chemical bath deposition method. The amount of Cu(OH)2 loaded on the arrays was controlled by the repeated deposition times. The prepared catalyst was used to generate hydrogen under simulated solar light irradiation, and the results demonstrated that the hydrogen yield of Cu(OH)2/TNAs was 20.3 times that of the pure TNAs. Furthermore, the photocatalytic efficiency for hydrogen production decreased only 5.8% after five cycles, indicating that Cu(OH)2/TNAs photocatalyst showed excellent stability and reusability. This work presents an applicable and facile method to fabricate a highly active and stable photocatalyst for hydrogen production.  相似文献   

4.
Cu2O/Cu/TiO2 nanotube heterojunction arrays were prepared by assembling Cu@Cu2O core-shell nanoparticles on TiO2 nanotube arrays (NTAs) using a facile impregnation-reduction method. SEM and TEM results show that Cu@Cu2O plate-like nanoparticles with tens of nanometers in size are confined inside TiO2 NTAs. Only the outmost several nanometers of the nanoparticles are Cu2O and the predominant inner of the nanoparticles are Cu metals. Cu L3VV Auger spectra of Cu2O/Cu/TiO2 NTAs suggest that Cu metals are enveloped by at least several nanometers Cu2O on the surface, which further confirms the Cu@Cu2O core shell structure of Cu nanoparticles. The ability of light absorption of Cu2O/Cu/TiO2 NTAs is enhanced. The range of absorption wavelengths changes from 400 to 700 nm due to the surface plasmon response of Cu metals core and Cu2O nanoparticles shell. The photocatalytic hydrogen production rate of Cu2O/Cu/TiO2 heterojunction arrays is enhanced when compared with those of Cu2O/TiO2 NTAs and TiO2 NTAs under UV light. Moreover, a stable H2 generation property was obtained under visible light (λ gt; 400 nm). The Cu metal core is believed to play a key role in the enhancement of photocatalytic properties of Cu2O/Cu/TiO2 nanotube heterojunction arrays.  相似文献   

5.
To improve the photoelectrochemical (PEC) water splitting efficiency for hydrogen production, we reported the fabrication of lotus-root-shaped, highly smooth and ordered TiO2 nanotube arrays (TiO2 NTs) by a simple and effective two-step anodization method. The TiO2 NTs prepared in the two-step anodization process (2-step TiO2 NTs) showed better surface smoothness and tube orderliness than those of TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). Under illumination of 100 mW/cm2 (AM 1.5, simulated solar light) in 1 M KOH solution, water was oxidized on the 2-step TiO2 NTs electrode with higher efficiency (incident-photon-to-current efficiency of 43.4% at 360 nm and photocurrent density of 0.90 mA/cm2 at 1.23 VRHE) than that on the 1-step TiO2 NTs electrode. The effective photon-to-hydrogen conversion efficiency was found to be 0.18% and 0.49% for 1-step TiO2 NTs and 2-step TiO2 NTs, respectively. These results suggested that the structural smoothness and orderliness of TiO2 NTs played an important role in improving the PEC water splitting application for hydrogen generation.  相似文献   

6.
The present work investigates the photoelectrochemical behavior of nanotubular N/C-TiO2 electrode for hydrogen production. Via the sonoelectrochemical anodization process of 1 h, N-containing TiO2 based nanotube arrays(N-TNT) with the length of about 650 nm were fabricated in fluoride aqueous solution added 0.25 M NH4NO3; C-containing TiO2 based nanotube arrays(C-TNT) with the length of about 2 μm were prepared in fluoride ethylene glycol solution. In virtue of the longer tubes with the larger surface areas, C-TNT can harvest more light and produce more photoactive sites than N-TNT, which also made the charge transfer resistance in C-TNT larger than that in N-TNT. Considered the more negative flat band potential of C-TNT, C-TNT has the smaller energy barrier and the better photoelectrochemical activity. It may be attributed to the appropriate defect concentration gradient owing to the modification of C element. Under UV-vis light (320-780 nm) irradiation, the average hydrogen generation rate of C-TNT was 282 μL h−1 cm−2. The surface properties and near-surface properties of the resultant electrode were synthetically analyzed by using UV-vis diffuse reflectance spectra(DRS), field emission scanning electron microscopy (FESEM), I-t curves, and electrochemical impedance spectroscopy (EIS) techniques.  相似文献   

7.
Photo-assisted hydrogen generation studies of platinum loaded titanium (IV) oxide nanotubes suspended in ethanol–water mixture were carried out at room temperature. The TiO2 nanotubes synthesized by rapid breakdown anodization technique were loaded with Pt nanoparticles by chemical reduction of aqueous chloroplatinic acid solution using sodium borohydride. The chemisorption (active) surface area of the synthesized nanocomposites for hydrogen was measured by pulse chemisorption method using temperature programmed desorption reduction oxidation equipment and found to decrease with increase in platinum loading in the range 1–10 wt%. The platinum supported nanotube composites were characterized for phase and morphology by XRD, TEM and SEM. The hydrogen generated by the photocatalytic reduction of water from water–ethanol mixture at different wavelengths of incident light, using the Pt-TiO2 nanocomposite photocatalyst, was determined by using a proton exchange membrane based hydrogen meter. The highest hydrogen generation efficiency was observed at 1–2.5 wt% of Pt loading. The maximum photocatalytic hydrogen generation of 0.03 mol/h/g of Pt-TiO2 was observed with a 64 W UV light source (λ = 254 nm). The photoluminescence property of the Pt loaded TiO2 has been correlated with the hydrogen generation efficiency and the reaction mechanism briefly discussed.  相似文献   

8.
Highly dispersed CuO was introduced into TiO2 nanotube (TNT) made by hydrothermal method via adsorption-calcination process or wet impregnation process, to fabricate CuO incorporated TNT photocatalysts (CuO-TNT) for hydrogen production. It was found that CuO-TNT possessed excellent hydrogen generation activity, which was constantly vigorous throughout 5 h reaction. Depending on the preparation method, hydrogen evolution rates over CuO-TNT were founded in the range of 64.2-71.6 mmol h−1 g−1catalyst, which was much higher than the benchmark P25 based photocatalysts, and even superior to some Pt/Ni incorporated TNT. This high photocatalytic activity of CuO-TNT was mainly attributed to the unique 1-D tubular structure, large BET surface area and high dispersion of copper component. Compared to wet impregnation, adsorption-calcination process was superior to produce active photocatalyst, since it was prone to produce photocatalyst with more highly dispersed CuO.  相似文献   

9.
A photoelectrochemical (PEC) cell with an innovative design for hydrogen generation via photoelectrocatalytic water splitting is proposed and investigated. It consisted of a TiO2 nanotube photoanode, a Pt/C cathode and a commercial asbestos diaphragm. The PEC could generate hydrogen under ultraviolet (UV) light-excitation with applied bias in KOH solution. The Ti mesh was used as the substrate to synthesize the self-organized TiO2 nanotubular array layers. The effect of the morphology of the nanotubular array layers on the photovoltaic performances was investigated. When TiO2 photocatalyst was irradiated with UV-excitation, it prompted the water splitting under applied bias (0.6 V vs. Normal Hydrogen Electrode, NHE.). Photocurrent generation of 0.58 mA/cm2 under UV-light irradiation showed good performance on hydrogen production.  相似文献   

10.
TiO2 nanotube arrays were fabricated by sonoelectrochemical anodic oxidation and calcined in nitrogen, air, or 5% hydrogen/nitrogen which was denoted as TNT-A, TNT-N, and TNT-H, respectively. All annealed TiO2 nanotube arrays samples exhibited similar surface morphology. With UV illumination (365 ± 15 nm), the photocurrent density of the TNT-A, TNT-N and TNT-H was about 0.27 mA/cm2, 0.45 mA/cm2 and 0.60 mA/cm2, respectively. The trapped electron at the Ti4+ center of TiO2 nanotube arrays shows absorption at around 500-700 nm. From the XPS measurement, it was found that annealing in 5% hydrogen/nitrogen helped the sample obtain a greater defect density. Because of the reduction of Ti4+ and the formation of oxygen vacancies, the charge transfer resistance appeared in this order: TNT-A > TNT-N > TNT-H. Thus TNT-H harvested the greatest charge carrier density of 9.86 × 1020 cm−3, TNT-N and TNT-A obtained a charge carrier density of 1.38 × 1020 cm−3 and 1.06 × 1020 cm−3, respectively. Accordingly, the hydrogen production rate by water splitting over TNT-A, TNT-N and TNT-H (320-780 nm irradiation, 3 h) was about 120 μL/h cm2, 159 μL/h cm2 and 231 μL/h cm2, respectively.  相似文献   

11.
Highly ordered TiO2 nanotube arrays were prepared by anodic oxidation of Ti foil under different anodization voltages in ethylene glycol electrolyte. The morphology and photoelectrochemical performance of the TiO2 nanotubes (NTs) samples were characterized by FESEM and electrochemical working station. Hydrogen production was measured by splitting water in the two-compartment photoelectrochemical (PEC) cell without any external applied voltage or sacrificial agent. The results indicated that anodization voltage significantly affects morphology structures, photoelectrochemical properties and hydrogen production of TiO2 NTs. The pore diameter and layer thickness of TiO2 samples increased linearly with the anodization voltage, which led to the enhancement of active surface area. Accordingly, the photocurrent response, photoconversion efficiency and hydrogen production of TiO2 nanotubes were also linearly correlated with the anodization voltage.  相似文献   

12.
1-D mesoporous TiO2 nanotube (TNT) with large BET surface area was successfully synthesized by a hydrothermal-calcination process, and employed for simultaneous photocatalytic H2 production and Cu2+ removal from water. Cu2+, across a wide concentration range of 8-800 ppm, was removed rapidly from water under irradiation. The removed Cu2+ then combined with TNT to produce efficient Cu incorporated TNT (Cu-TNT) photocatalyst for H2 production. Average H2 generation rate recorded across a 4 h reaction was between 15.7 and 40.2 mmol h−1 g−1catalyst, depending on initial Cu2+/Ti ratio in solution, which was optimized at 10 atom%. In addition, reduction process of Cu2+ was also a critical factor in governing H2 evolution. In comparison with P25, its large surface area and 1-D tubular structure endowed TNT with higher photocatalytic activity in both Cu2+ removal and H2 production.  相似文献   

13.
A highly stable photoelectrocatalytic electrode made of CdS-modified short, robust, and highly-ordered TiO2 nanotube array for efficient visible-light hydrogen generation was prepared via sonoelectrochemical anodization and sonoelectrochemical deposition method. The short nanotube electrode possesses excellent charge separation and transfer properties, while the sonoelectrochemical deposition method improves the combination between CdS and TiO2 nanotubes, as well as the dispersion of CdS nanoparticles. Different characterization techniques were used to study the nanocomposite electrode. UV-vis absorption and photoelectrochemical measurements proved that the CdS coating extends the visible spectrum absorption and the solar spectrum-induced photocurrent response. Comparing the photoactivity of the CdS/TiO2 electrode obtained using sonoelectrochemical deposition method with others that synthesized using plain electrochemical deposition, the current density of the former electrode is ∼1.2 times higher that of the latter when biased at 0.5 V. A ∼7-fold enhancement in photocurrent response is obtained using the sonoelectrochemically fabricated CdS/TiO2 electrode in comparison with the pure TiO2 nanotube electrode. Under AM1.5 illumination the composite photoelectrode generate hydrogen at a rate of 30.3 μmol h−1 cm−2, nearly 13 times higher than that of pure titania nanotube electrode. Recycle experiments demonstrated the excellent stability and reliability of CdS/TiO2 electrode prepared by sonoelectrochemical deposition. This composite electrode, with its strong mechanical stability and excellent combination of CdS and TiO2 nanotubes, offers promising applications in visible-light-driven renewable energy generation.  相似文献   

14.
The use of hydrogen as an energy carrier is an attractive solution toward addressing global energy issues and reducing the effects of climate change. Design of new materials with high hydrogen sorption capacity and high stability is critical for hydrogen purification and storage. In this study, titanium dioxide nanotubes (TiO2NTs) were modified with palladium nanoparticles (PdNPs) utilizing a facile photo-assisted chemical deposition approach. Electrochemical anodization was employed for the direct growth of TiO2NTs. The PdNP functionalized TiO2NTs (TiO2NT/Pd) were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The hydrogen sorption behaviours and stability of the TiO2NT/Pd nanocomposites were investigated and compared with nanoporous Pd networks that were deposited on a bulk titanium substrate (Ti/Pd) using cyclic voltammetry (CV) and chronoamperometry (CA). Our studies show that the TiO2NT/Pd nanocomposites possess a much higher hydrogen storage capacity, faster kinetics for hydrogen sorption and desorption, and higher stability than the nanoporous Pd.  相似文献   

15.
The photocatalytic activity in hydrogen production from methanol reforming can be significantly enhanced by Pt/MoO3/TiO2 photocatalysts. Compared with Pt/P25, the photocatalytic activity of optimized Pt/MoO3/TiO2 shows an evolution rate of 169 μmol/h/g of hydrogen, which is almost two times higher than that of Pt/P25. XRD and Raman spectra show that MoO3 are formed on the surface of TiO2. It is found that with the bulk MoO3 just formed, the catalyst shows the highest activity due to a large amount of heterojunctions and the high crystallinity of MoO3. The HRTEM image showed a close contact between MoO3 and TiO2. It is proposed that the Z-scheme type of heterojunction between MoO3 and TiO2 is responsible for the improved photocatalytic activity. The heterojunction structure of MoO3/TiO2 does not only promote the charge separation, but also separates the reaction sites, where the oxidation (mainly on MoO3) and reduction (on TiO2) reactions occurred.  相似文献   

16.
Highly-ordered, vertically oriented TiO2 nanotubes are synthesized, and their hydrogen sensing properties are investigated. Self-organized TiO2 nanotube arrays are grown by anodic oxidation of a titanium foil in an aqueous solution that contains 1 wt% hydrofluoric acid at 20 °C. We use a potential ramp at a rate of 100 mV s−1, increasing from the initial open-circuit potential (OCP) to 20 V, and this final potential of 20 V is then held constant during the anodization process. The fabricated TiO2 nanotubes are approximately 1 μm in length and 90 nm in diameter. For the sensor measurements, two platinum pads are used as electrodes on the TiO2 nanotube arrays. The hydrogen sensing characteristics of the sensor are analyzed by measuring the sensor responses ((I − I0)/I0) in the temperature interval of 20–150 °C. We find that the sensitivity of the sensor is approximately 20 for 1000 ppm H2 exposure at room temperature, and increases with increasing temperature. The sensing mechanism of the TiO2 nanotube sensor could be explained with chemisorption of H2 on the highly active nanotube surface.  相似文献   

17.
Doping is an important approach to modulate the catalytic properties, for example, the change of the overpotential, of TiO2 semiconductor for water splitting. In this study, by systematically investigating the thermodynamic properties of one-electron water splitting, we found that the required overpotentials can be divided into two groups: one is a high overpotential (∼1.0 V) on pristine TNTAs, Pt/TNTAs and N-TNTAs; and the other is a low overpotential (∼0.6 V) on F-TNTAs, Pt/N-TNTAs and Pt/F-TNTAs. And two kinds of linear relations between the binding energies of O, HO and HOO intermediates are further identified, which are unambiguously ascribed to the bonding characteristics between the reaction intermediates and the two types of TNTAs with the high and low overpotential, respectively. Therefore, the current work will make a step towards understanding the mechanism of water splitting on various doped TNTAs and designing the superior TiO2-based photoanode materials with lower overpotentials.  相似文献   

18.
The highly ordered Ag-SrTiO3 nanotube arrays (NTAs) with uniform size were successfully synthesized by a combination of anodic oxidation, hydrothermal process and photocatalytic reduction method. X-ray photoelectron spectroscopy analysis reveals that Ag exists in the form of metallic silver, which is in good agreement with the X-ray diffraction characterization. Moreover, the UV-vis diffuse reflectance spectra indicate that Ag-SrTiO3 NTAs have a strong absorption in the visible region which is attributed to the plasmon resonance of silver nanoparticles. After Ag loading, a further improvement of the photocatalytic activity for hydrogen production was obtained. Based on the above results, a possible electron-hole transfer mechanism was also assumed.  相似文献   

19.
Highly ordered TiO2 nanotube arrays fabricated by anodization are very attractive to dye-sensitized solar cells (DSCs) due to their superior charge percolation and slower charge recombination. However, the efficiency of TiO2-nanotube-based DSCs is 6.89%, which is still lower than that of TiO2-nanoparticle-based DSCs. We have suggested the transplanting the highly ordered TiO2 nanotube arrays to FTO glass to improve the performance of TiO2-nanotube-based DSCs. DSCs based on transplanted TiO2 nanotube arrays and TiO2 nanoparticles were fabricated by same process and materials to exclude the unexpected factors. In TiO2 thickness of ca. 15 μm, the efficiency of 2.91% in front-side illuminated DSCs based on TiO2 nanotube arrays was higher than those in back-side illuminated DSCs based on TiO2 nanotube arrays and in front-side illuminated DSCs based on TiO2 nanoparticle. Front-side illuminated DSCs based on TiO2 nanotube arrays having various thicknesses were successfully fabricated. The efficiency in DSCs having 20.0 μm thick TiO2 nanotube arrays was improved to 5.36% by TiCl4 treatment.  相似文献   

20.
This paper describes the photoelectrochemical studies on nanostructured iron doped titanium dioxide (TiO2) thin films prepared by sol-gel spin coating method. Thin films were characterized by X-ray diffraction, Raman spectroscopy, spectral absorbance, atomic force microscopy and photoelectrochemical (PEC) measurements. XRD study shows that the films were polycrystalline with the photoactive anatase phase of TiO2. Doping of Fe in TiO2 resulted in a shift of absorption edge towards the visible region of solar spectrum. The observed bandgap energy decreased from 3.3 to 2.89 eV on increasing the doping concentration upto 0.2 at.% Fe. 0.2 at.% Fe doped TiO2 exhibited the highest photocurrent density, ∼0.92 mA/cm2 at zero external bias. Flatband potential and donor density determined from the Mott–Schottky plots were found to vary with doping concentration from −0.54 to −0.92 V/SCE and 1.7 × 1019 to 4.3 × 1019 cm−3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号