首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have used environmental scanning electron microscope to observe vapor condensation and liquid water morphology and breakthrough in porous layers of polymer electrolyte membrane fuel cell. These suggest presence of large droplets and high liquid saturation at interface of the catalyst layer (CL) and gas diffusion layer (GDL), due to jump in pore size. We develop a model for morphology of liquid phase across multiple porous layers by use of both continuum and breakthrough (percolation) treatments. Using the results of this model we show the liquid morphologies deteriorate the efficiency of electrochemical reactions in CL and increase the water saturation in GDL. Then we show that inserting a microporous layer between CL and GDL reduces both the droplet size and liquid saturation and improves the cell performance.  相似文献   

2.
In proton exchange membrane fuel cells (PEMFCs), a hydrophobic micro-porous layer (MPL) is usually placed between the catalyst layer (CL) and the conventional gas diffusion layer (GDL) to relieve the flooding. In this paper, a pore network model is developed to investigate how the MPL structure affects the liquid and oxygen transport properties of the bilayer gas diffusion material (GDM) consisting of fine MPL and coarse GDL. The regular three-dimensional pore network constructed to represent the bilayer GDM are composed of the cubic pores that are connected by the narrow throats of square cross section. Based on this model, the capillary pressure, liquid permeability, and oxygen effective diffusivity as a function of GDM liquid saturation are determined. Parameter studies are performed to elucidate the influences of MPL thickness and of MPL crack width. Also analyzed are the liquid distributions in different structural GDMs at the moment of breakthrough. The results reveal a liquid saturation jump at the MPL/GDL interface in the plain bilayer GDM, but a liquid saturation drop in the defective bilayer GDM.  相似文献   

3.
In this study, the lattice Boltzmann method was used to simulate the three-dimensional intrusion process of liquid water in the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell (PEMFC). The GDL was reconstructed by the stochastic method and used to investigate fiber orientation's influence on liquid water transport in the GDL of a PEMFC. The fiber orientation can be described by the angle between a single fiber and the in-plane direction; three different samples were simulated for three different fiber orientation ranges. The simulated permeability correlated well with the anisotropic characteristics of reconstructed carbon papers. It was concluded that the fiber orientation had a significant effect on the liquid invasion pattern in the GDL by changing the pore shape and distribution of the GDL. The results indicated that the stochastically reconstructed GDL, taking into account the fiber orientation, better demonstrates the mass transport properties of the GDL.  相似文献   

4.
The pore structure and pore volume of catalyst layer (CL) were controlled by utilizing multi-walled carbon nanotube (MWCNT). According to the increase in MWCNT ratio in CL, the primary pore (below 100 nm) volume concerning with the phosphoric acid penetration to the reaction site was decreased and the secondary pore (approximately 1 μm) volume relating with oxygen gas transportation was increased, respectively. However, the excessive addition of MWCNT was detrimental to electrochemical properties due to the difficulty of phosphoric acid penetration to the reaction site and the opposite influx of phosphoric acid to the secondary pore. Furthermore, the adhesion strength between CL and gas diffusion layer (GDL) was improved by only 10% addition of MWCNT. Therefore, it is suggested that the ratio of MWCNT in CL can be key role for obtaining the optimized pore volume, enhanced adhesion strength, and good performance of polymer electrolyte membrane fuel cell (PEMFC).  相似文献   

5.
Developing a fuel cell model with fundamental structural properties such as distribution of pore size, geometrical network of individual phase, and volume-specific interfacial area are critical in evaluating the accurate cell performance. Therefore, herein, by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) tomography, three-dimensional (3-D) microstructure of CLs is reconstructed from two real-time samples: (i) High tortuosity humidifying catalyst layer (HTH CL) and (ii) standard catalyst layer. From the reconstructed microstructure, water imbibition behavior at different levels of capillary pressure is simulated and the effective transport properties such as gas permeability, gas diffusivity, surface area and water permeability are derived as well. By coupling the effective structural and transport properties, a 2D model is developed to predict the performances of the two CLs, at relative humidity (RH) levels of 20% and 100%. Since the effective transport properties are derived from real-time samples, this 2D model is expected to have a greater accuracy in predicting the fuel cell performance. Finally, the mechanism of self-humidifying MEA at lower and higher RH conditions (20% RH and 100% RH) is demonstrated as a function of liquid water saturation in the cathode CL and water dry-out in the anode CL.  相似文献   

6.
In proton exchange membrane fuel cell (PEMFC), a hydrophobic micro-porous layer (MPL) is usually placed between catalyst layer (CL) and gas diffusion layer (GDL) to reduce flooding. Recent experimental studies have demonstrated that liquid water saturation in GDL is drastically decreased in the presence of MPL. However, theoretical studies based on traditional continuum two-phase flow models suggest that MPL has no effect on liquid water distribution in GDL. In the present study, a pore network model with invasion percolation algorithm is developed and used to investigate the impacts of the presence of MPL on liquid water distribution in GDL from the viewpoint at the pore level. A uniform pressure and uniform flux boundary conditions are considered for liquid water entering the porous layer in PEMFC. The simulation results reveal that liquid water saturation in GDL is reduced in the presence of MPL, but the reduction depends on the condition of liquid water entering the porous layer in PEMFC.  相似文献   

7.
Proton exchange membrane fuel cells (PEMFCs) are promising clean power sources with high energy conversion efficiency, fast startup, and no pollutant emission. The generated water in the cathode can cause water flooding of the catalyst layer (CL), which in turn can significantly decrease the fuel cell performance. To address this significant issue of PEMFC, a new gas diffusion layer (GDL) with non-uniform distribution of PTFE is proposed for water removal from the CL. The feasibility of this new GDL design is numerically evaluated by a Lattice-Boltzmann Method (LBM)-based two-phase flow model. The porous structure of the new GDL design is numerically reconstructed, followed by LBM simulations of the water transport in GDL. Three types of different wetting conditions are considered. It is found that liquid water transported 7.87% more with a single row of wetted solids and 13.36% more with two rows of wetted solids. The results clearly demonstrate that the liquid water can be effectively removed from the GDL by proper arrangement of hydrophilic solids in the GDL.  相似文献   

8.
A pore network model of the gas diffusion layer (GDL) in a polymer electrolyte membrane fuel cell is developed and validated. The model idealizes the GDL as a regular cubic network of pore bodies and pore throats following respective size distributions. Geometric parameters of the pore network model are calibrated with respect to porosimetry and gas permeability measurements for two common GDL materials and the model is subsequently used to compute the pore-scale distribution of water and gas under drainage conditions using an invasion percolation algorithm. From this information, the relative permeability of water and gas and the effective gas diffusivity are computed as functions of water saturation using resistor-network theory. Comparison of the model predictions with those obtained from constitutive relationships commonly used in current PEMFC models indicates that the latter may significantly overestimate the gas phase transport properties. Alternative relationships are suggested that better match the pore network model results. The pore network model is also used to calculate the limiting current in a PEMFC under operating conditions for which transport through the GDL dominates mass transfer resistance. The results suggest that a dry GDL does not limit the performance of a PEMFC, but it may become a significant source of concentration polarization as the GDL becomes increasingly saturated with water.  相似文献   

9.
In this paper, the hydrogen and nitrogen crossover through the membrane in proton exchange membrane fuel cells, are investigated by developing a semi-empirical analytical model. Different factors that affect the gas crossover rates were considered including pressure drop in gas diffusion layer (GDL) and catalyst layer (CL), operating temperature, relative humidity (RH) of the reactants, GDL compression, and the current density effect on the membrane temperature. The model is validated by published experimental data. It is found that RH is the most important parameter, followed by temperature. The hydrogen pressure drop through GDL and CL greatly depends on the GDL substrate properties, microporous layer (MPL) and CL. When permeability is low, an increase in current density reduces gas crossover. GDL compression, when MPL is used, was found to have a low impact on gas crossover. Gas crossover is improved with current density due to an increase in membrane temperature.  相似文献   

10.
As the softest part in a proton exchange membrane fuel cell (PEMFC), the gas diffusion layer (GDL) could have a large deformation under assembly pressure imposed by bipolar plate, which would have an impact on the cell performance. So, there is an urgent need to clearly reveal the mechanical behavior of GDL under certain pressure. In this paper, the mechanical behavior of paper-type GDL of PEMFC is studied, considering the complex contact environment in the fibrous layered structure. The microstructure of GDL is reconstructed stochastically, then the stress-strain relationship of GDL is explored from the perspective of solid mechanics by using the finite element method. Based on microstructure morphology, it is found that contact pairs and pore space of microstructure are two key factors determining the nonlinearity of the compressive curve. The equivalent Young's modulus increases with the decrease of porosity and carbon fiber diameter but it is not very sensitive to the carbon paper thickness. The results indicate that with the increase in acting pressure, the average porosity of the carbon paper decreases, and the nonuniformity of porosity along the through-plane direction increases. Furthermore, a reasonable explanation for the increase of concentration loss and the decrease of ohmic loss is given from the microstructure findings of the present study.  相似文献   

11.
The electrochemical behavior and the reactant transport in the porous gas diffusion layer (GDL) and catalyst layer (CL) are controlled by a large number of parameters such as porosity, permeability, conductivity, catalyst loading, and average pore size, etc. A three‐dimensional polymer electrolyte membrane fuel cell model is developed. The model accounts for the mass, fluid, and thermal transport processes as well as the electrochemical reaction. Using this model, the effects of the various porous electrode design parameters including porosity, solid electronic conductivity, and thermal conductivity of cathode GDL, and the catalyst loading, average pore size of cathode CL are investigated through parametric study. The model is shown to agree well with the experimental data of some porous electrode specifications. In addition, the model shows promise as a tool for optimizing the design of fuel cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This study aims to investigate how multiple parameters affect the two-phase flow in compressed gas diffusion layer (GDL). A stochastic model is adopted to reconstruct the GDL microstructures. Solid mechanics simulations on the reconstructed GDL microstructures are performed, based on the finite element method (FEM). Various pore morphologies and distributions of compressed GDLs are observed. Two-phase flow in GDL is simulated using a volume of fluid (VOF) model. Corner droplet (on the GDL surface) and water flow (emerging from GDL bottom) are considered. It is found that two-phase flow in the GDL is highly influenced by compression, fiber diameter, porosity, and GDL thickness. The results indicate that a larger fiber diameter or higher porosity contributes to the water transport due to larger average pore size. Furthermore, water removal from a thicker GDL is more difficult, whereas water transport in the lower part of a compressed thick GDL is easy.  相似文献   

13.
In PEM fuel cell, gas-diffusion electrode (GDE) plays very significant role in force transmission from bipolar plate to the membrane. This paper investigates the effects of geometrical heterogeneities of gas-diffusion electrode layer (gas-diffusion layer (GDL) and catalyst layer (CL)) on mechanical damage evolution and propagation. We present a structural integrity principle of membrane electrode assembly (MEA) based on the interlayer stress transfer capacity and corresponding cell layer material response. Commonly observable damages such as rupture of hydrophobic coating and breakage of carbon fiber in gas-diffusion layer are attributed to the ductile to brittle phase transition within a single carbon fiber. Effect of material inhomogeneity on change in modulus, hardness, contact stiffness, and electrical contact resistance is also discussed. Fracture statistics of carbon fiber and variations in flexural strength of GDL are studied. The damage propagation in CL is perceived to be influenced by the type of gradation and the vicinity from which crack originates. Cohesive zone model has been proposed based on the traction-separation law to investigate the damage propagation throughout the two interfaces (carbon fiber/CL and CL/membrane).  相似文献   

14.
We focus on the effect of cathode catalyst layer physical structure on the cell performance of proton exchange membrane fuel cell (PEMFC). At low polarization, high inlet humidification predicts better cell performance because of the more active surface in the CL. As polarization is extended near the mass transfer limited regime, high humidification only renders a flooded electrode and inferior cell performance. Catalyst layer with better capillary water transport parameters performs better than that with inferior water repulsion capability. Permeation in the gas diffusion layer (GDL) is important for efficient oxygen diffusion in mass transfer influenced regime. On the other hand, the permeability in catalyst layer only has secondary effect.The distribution of material properties in the CL is studied for the MEA fabrication strategy. The CL is divided into three sub-layers with changing material properties. With water effect considered, better performance is obtained for higher porosity near the GDL, higher electrolyte fraction in the agglomerate near the membrane. The effect of agglomerate particle size differs in the ohmic and mass transfer controlled regimes. Larger agglomerate size near GDL is preferred in the ohmic limited regime, while smaller size near GDL performs better if operated at mass transfer controlled regime.  相似文献   

15.
In this paper, the Volume of Fluid (VOF) method for tracking the gas-liquid interface is employed to investigate the carbon dioxide (CO2) behaviors inside the anode of a direct methanol fuel cell (DMFC). The CO2 bubble emergence processes from the catalyst layer (CL) to the gas diffusion layer (GDL) and then to the flow channels are studied with two different strategies. In the first strategy, the CL and GDL are modeled as a uniform porous layer; in the second strategy, they are modeled as a well-ordered-path GDL and a uniform CL. The simulation results show that the second modeling strategy can better capture and match the fundamental phenomena of CO2 bubble formation and evolvement observed from the experiments inside a DMFC anode.  相似文献   

16.
This study focused on novel cathode structures to increase power generation and organic substrate removal in microbial fuel cells (MFCs). Three types of cathode structures, including two-layer (gas diffusion layer (GDL) and catalyst layer (CL)), three-layer (GDL, micro porous layer (MPL) and CL), and multi-layer (GDL, CL, carbon based layer (CBL) and hydrophobic layers) structures were examined and compared in single-chamber MFCs (SCMFCs). The results showed that the three-layer (3L) cathode structures had lower water loss than other cathodes and had a high power density (501 mW/m2). The MPL in the 3L cathode structure prevented biofilm penetration into the cathode structure, which facilitated the oxygen reduction reaction (ORR) at the cathode. The SCMFCs with the 3L cathodes had a low ohmic resistance (Rohmic: 26-34 Ω) and a high cathode open circuit potential (OCP: 191 mV). The organic substrate removal efficiency (71-78%) in the SCMFCs with 3L cathodes was higher than the SCMFCs with two-layer and multi-layer cathodes (49-68%). This study demonstrated that inserting the MPL between CL and GDL substantially enhanced the overall electrical conduction, power generation and organic substrate removal in MFCs by reducing water loss and preventing biofilm infiltration into the cathode structure.  相似文献   

17.
Water flooding in gas diffusion material (GDM) is an important limit in performance of proton exchange membrane fuel cell (PEFMC). Some efforts, such as modifying the pore structures in the GDM, have been made in order to facilitate water transport and to reduce flooding in PEMFC. Recent experimental studies have demonstrated that using a bi-layer GDM, consisting of a fine micro-porous layer (MPL) and a coarse gas diffusion layer (GDL), can be advantageous for water management in PEMFC. In this work, a pore network model with an invasion percolation algorithm is developed and used to investigate the effects of MPL properties, including thickness, wettability and connectivity, on water distribution in the bi-layer GDM from the viewpoint at the pore level. Furthermore, a reasonable inlet boundary condition is proposed to describe the actual phenomenon that the CL surface is covered with many independent water droplets which are much larger than pore sizes in MPL. Influences of water droplet size and coverage fraction are also clarified in the present study.  相似文献   

18.
A two-phase flow process model for the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell, considering also the cathode catalyst layer (CL), is presented. For this purpose, a systematic analysis of the factors affecting flooding and drying, including the liquid accumulation in the gas channel (CH), was performed using a one-dimensional reference model for the GDL and a compact channel model. The treatment proposed for the CH-GDL interface was compared with other boundary conditions in the literature. It was concluded that the liquid accumulation in the channel is determinant for estimating the steady state and transient GDL flooding, but that predicting the saturation level in the CL can help for determining operation policies for precluding flooding in the GDL-CL composite, in the absence of an adequate channel model. Bifurcation behavior, associated with the water phase change, was identified by means of the compact model.  相似文献   

19.
The present study applied Lattice Boltzmann method (LBM) for examining the transport of liquid water in a GDL carbonic paper of polymer electrolyte membrane (PEM) fuel cells. The stochastic method is used for GDL carbonic paper reconstruction. In order to study the behavior of liquid water, different simulations are carried out on the reconstructed GDL. While removing from the GDL of a PEM fuel cell, the dynamics of liquid water is simulated by LBM in this study. The effects that the wettability of GDL imposes on the removal process and liquid water distribution are investigated. In addition, the dynamic behaviors and the saturation process of the liquid water in GDL in a steady state and a transient mode are also explored. The effects of surface wettability on the effective clusters in GDL, merging of different clusters and the loops developed by the fingers are investigated. Moreover, the effects of mixed wettability on the liquid water dynamic behavior and liquid water saturation within the GDL are studied in detail. The results show that the best location for insertion of the hydrophilic layer inside the GDL is near the GDL-GC interface. In this case, the time required for liquid water to reach the GDL/GC interface is reduced about 17% than purely hydrophobic GDL. A decrease of 18.7% in the steady-state saturation level is also observed by insertion of hydrophilic layer; therefore, use of hydrophilic layer near GDL-GC interface is more effective than increasing the contact angle of GDL-fibers. Different validation studies are also reported to show the accuracy of the model.  相似文献   

20.
The effect of ionomer/carbon (I/C) ratio on proton exchange membrane (PEM) fuel cell cold start is investigated experimentally with theoretical water transport analysis. The scanning electron microscope (SEM) images show larger agglomerates and smaller effective reaction area by increasing the I/C ratio from 0.7 to 1.7. For normal operation, increasing the I/C ratio can improve the humidity tolerance, especially in the cathode. For cold start >?10 °C, a lower I/C ratio leads to better performance because the core reaction area is shifted towards the membrane, leading to more membrane water absorption and slower ice formation. For <?15 °C, the total water production is low and almost the same for the different I/C ratios because the ice formation takes place before effective membrane water absorption; and although the cathode catalyst layer (CL) and micro-porous layer (MPL) can provide sufficient space to store all the ice, higher I/C ratios (e.g. 1.2) still cause more ice formation in GDL and flow channel because the core reaction area becomes closer to GDL. The results show that the CL design has significant effect on the cold start performance, and there is a potential for further improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号