首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A stable, platinum-free catalyst-coated anion-exchange membrane with a promising performance for alkaline water electrolysis as an energy conversion technology was prepared and tested. A hot plate spraying technique used to deposit electrodes 35 or 120 μm thick on the surface of an anion-selective polymer electrolyte membrane. These thicknesses of 35 and 120 μm corresponding to the catalyst load of 2.5 and 10 mg cm−2. The platinum free catalysts based on NiCo2O4 for anode and NiFe2O4 for cathode were used together with anion selective polymer binder in the catalyst/binder ratio equal to 9:1. The performance of the prepared membrane-electrode assembly was verified under conditions of alkaline water electrolysis using different concentrations of liquid electrolyte ranging from 1 to 15 wt% KOH. The electrolyser performance was compared to a cell utilizing a catalyst-coated Ni foam as the electrodes. The prepared membrane-electrode assembly stability at a current load of 0.25 A cm−2 was verified by a 72-hour electrolysis test. The results of the experiments indicated the possibility of a significant reduction of the catalyst loading compared to a catalyst-coated substrate approach.  相似文献   

2.
A commercial FAA3-50 membrane was investigated as a solid polymer electrolyte in an alkaline water electrolysis. An improved chemical treatment based on alkaline KOH solution was carried out. A limited degradation of the functional groups was observed allowing to maintain a good anion conductivity approaching 55 mS cm-1 at 100 °C. Thermal stability up to 200 °C was assessed by thermal analysis.A specific membrane-electrodes assembly based on FAA3-50 anionic membrane and NiMn2O4 anode catalyst was developed and investigated in a single cell for water electrolysis at a moderate temperature (50 °C).Performance stability was assessed by a potential cycling-based durability test for 1000 h by varying the cell potential between 1 and 1.8 V for the FAA3-50 and NiMn2O4 based-MEA.According to this evaluation, both the FAA3-50 membrane and the NiMn2O4 catalyst appear sufficiently stable for electrolysis operation under mild operating temperatures.  相似文献   

3.
A polymer electrolyte membrane for alkaline direct ethanol fuel cell (ADEFC) was prepared by dipping Nafion112 membrane into KOH solution for some time at room temperature. The obtained membrane (Nafion112/KOH) exhibited higher mechanical properties and thermal stability than Nafion112 membrane. The ionic conductivity of Nafion112/KOH in 1 M, 2 M and 6 M KOH solutions was 0.011 S/cm, 0.026 S/cm, 0.032 S/cm, respectively, depending on internal OH concentration and the volume fraction of the internal aqueous phase. Single cell performance suggested that active ADEFC with Nafion112/KOH membrane can deliver a peak power density of 58.87 mW/cm2 at 90 °C, meanwhile, it can stably run for at least 12 h above 0.2 V. On the other hand, Pt-free air breathing ADEFC with Nafion112/KOH can output a peak power density of 11.5 mW/cm2 at 60 °C, and the corresponding lifetime was as long as 473 h above 0.3 V.  相似文献   

4.
A key issue to develop low-temperature solid oxide fuel cells (LTSOFCs) is to develop new electrolyte materials with enhanced ionic conductivity. Recently, SDC/Na2CO3 nanocomposite, as a proton and oxide co-ion conductor, has been developed as promising electrolyte candidates for LTSOFCs, where Na2CO3 as the secondary phase performs several crucial functions. However, it’s difficult to control the homogeneity of Na2CO3 phase in the composite by the current methods for composite fabrication. In this study, we report a new freeze drying technique to fabricate SDC/Na2CO3 nanocomposites with different content of Na2CO3. Structural and morphological study confirmed that the homogeneity of both SDC and Na2CO3 phases in the nanocomposite is well controlled by the freeze drying technique. The effect of Na2CO3 content on proton and oxygen ion conductivities of SDC-carbonate samples were investigated by the four-probe d.c. measurement. Proton conductivity transformation around 350 °C has been observed for all the SDC/Na2CO3 nanocomposites due to the glass transition of amorphous Na2CO3 phase, and the proton conductivity is dependent on Na2CO3 content. While oxygen ion conductivity deceases with the increasing of Na2CO3 volume fraction in the nanocomposite. Finally, SOFCs were fabricated using SDC/Na2CO3 nanocomposite samples and tested for electrochemical performances. The excellent performance of SOFCs using SDC/Na2CO3 nanocomposite electrolyte verifies that nanocomposite approach is an effective way to fabricate electrolyte with enhanced ionic conductivity for LTSOFCs.  相似文献   

5.
It is important to know the conductivity of the electrolyte of an alkaline electrolysis cell at a given temperature and concentration so as to reduce the ohmic loss during electrolysis through optimal cell and system design. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.7 S cm−1 for 35 wt%, 2.9 S cm−1 for 45 wt%, and 2.8 S cm−1 for 55 wt% concentrated aqueous solutions were measured at 200 °C. Micro- and nano-porous solid pellets were produced and used to immobilize aqueous KOH solutions. These are intended to operate as ion-conductive diaphragms (electrolytes) in alkaline electrolysis cells, offering high conductivity and corrosion resistance. The conductivity of immobilized KOH has been determined by the same method in the same temperature and concentration range. Conductivity values as high as 0.67 S cm−1 for 35 wt%, 0.84 S cm−1 for 45 wt%, and 0.73 S cm−1 for 55 wt% concentrated immobilized aqueous solutions were determined at 200 °C. Furthermore, phase transition lines between the aqueous and aqueous + gaseous phase fields of the KOH/H2O system were calculated as a function of temperature, concentration and pressure in the temperature range of 100–350 °C, for concentrations of 0–60 wt% and at pressures between 1 and 100 bar.  相似文献   

6.
In this study, a highly ion-conductive and durable porous polymer electrolyte membrane based on ion solvating polybenzimidazole (PBI) was developed for anion exchange membrane fuel cells (AEMFCs). The introduction of porosity can increase the attraction of electrolytic solutions (e.g., potassium hydroxide (KOH)) and ion solvation, which results in the enhancement of PBI's ionic conductivity. The morphology, thermo-physico-chemical properties, ionic conductivity, alkaline stability, and the AEMFC performance of KOH-doped PBI membranes with different porosities were characterized. The ionic conductivity and AEMFC performance of 70 wt.% porous PBI was about 2 times higher than that of the commercially available Fumapem® FAA. All KOH-doped porous PBI membranes maintained their ionic conductivity after accelerated alkaline stability testing over a period of 14 days, while the commercial FAA degraded just after 3 h. The excellent performance and good durability of KOH-doped porous PBI membrane makes it a promising candidate for AEMFCs.  相似文献   

7.
An alkaline polymer electrolyte film has been prepared by a solvent-casting method. Poly(vinyl alcohol), PVA is added to improve the ionic conductivity of the electrolyte. The ionic conductivity increases from 10−7 to 10−2 S cm−1 at room temperature when the weight percent ratio of poly(ethylene oxide), PEO to PVA is increased from 10:0 to 5:5. The activation energy of the ionic conductivity for the PEO–PVA–KOH polymer electrolyte is 3–8 kJ mol−1. The properties of the electrolyte film are characterized by a wide variety of techniques and it is found that the film exhibits good mechanical stability and high ionic conductivity at room temperature. The application of such electrolyte films to nickel–metal-hydride (Ni–MH) batteries is examined and the electrochemical characteristics of a polymer Ni–MH battery are obtained.  相似文献   

8.
《Journal of power sources》2005,141(1):188-192
A micro-porous polymer electrolyte based on PVA was obtained from PVA–PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301–351 K. It is observed that a 2 M LiClO4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10−3 S cm−1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn2O4 cell to reveal the compatibility and electrochemical stability between electrode materials.  相似文献   

9.
The samarium doped ceria-carbonate (SDC/Na2CO3) nanocomposite systems have shown to be excellent electrolyte materials for low-temperature SOFCs, yet, the conduction mechanism is not well understood. In this study, a four-probe d.c. technique has been successfully employed to study the conduction behavior of proton and oxygen ion in SDC/Na2CO3 nanocomposite electrolyte. The results demonstrated that the SDC/Na2CO3 nanocomposite electrolyte possesses unique simultaneous proton and oxygen ion conduction property, with the proton conductivity 1-2 orders of magnitude higher than the oxygen ion conductivity in the temperature range of 200-600 °C, indicating the proton conduction in the nanocomposite mainly accounts for the enhanced total ionic conductivity. It is suggested that the interface in composite electrolyte supplies high conductive path for proton, while oxygen ions are probably transported by the SDC grain interiors. An empirical “Swing Model” has been proposed as a possible mechanism of superior proton conduction.  相似文献   

10.
The effect of hydroxide and carbonate alkaline environments on the chemical stability and ionic conductivity of five commercially available anion exchange membranes was investigated. Exposure of the membranes to concentrated hydroxide environments (1 M) had a detrimental effect on ionic conductivity with time. Over a 30-day period, decreases in conductivity ranged from 27% to 6%, depending on the membrane. The decrease in ionic conductivity is attributed to the loss of stationary cationic sites due to the Hofmann elimination and nucleophilic displacement mechanisms. Exposure of the membranes to low concentration hydroxide (10−4 M) or carbonate/bicarbonate (0.5 M Na2CO3/0.5 M NaHCO3) environments had no measurable effect on the ionic conductivity over a 30-day period. ATR-FTIR spectroscopy confirmed degradation of membranes soaked in 1 M KOH. Apparition of a doublet peak in the region between 1600 cm−1 and 1675 cm−1 confirms formation of carbon-carbon double bonds due to Hofmann elimination. Membranes soaked in mild alkaline environments did not show formation of carbon-carbon double bonds.  相似文献   

11.
An anion exchange membrane for alkaline direct methanol fuel cell (ADMFC) was prepared by doping polybenzimidazole(PBI) membrane with KOH. The obtained membrane was characterized by means of XRD, TGA–DTA, AC and so on. The results suggested that it possessed satisfying thermal stability and comparable mechanical strength with acid doped PBI. At room temperature, methanol permeability through this membrane was one order of magnitude lower than that of Nafion® membrane, while its ionic conductivity was comparable with that of other anion exchange membranes in literatures. For ADMFC at 90 °C based on this PBI/KOH membrane electrolyte, the peak power density was about 31 mW/cm2, which was significantly improved mainly due to this membrane's high thermal stability, fast kinetics of electrochemical reactions and lower methanol permeability.  相似文献   

12.
Among the catalysts for hydrogen evolution reaction (HER) in alkaline media, Ni–Mo turns out to be the most active one. Conventional preparations of Ni–Mo electrode involve repeated spraying of dilute solutions of precursors onto the electrode substrate, which is time-consuming and usually results in cracking and brittle electrodes. Here we report a noble fabrication of Ni–Mo electrode for HER. NiMoO4 powder was synthesized and used as the precursor. After reduction in H2 at 500 °C, the NiMoO4 powder layer was converted to a uniform and robust electrode containing metallic Ni and amorphous Mo(IV) oxides. The distribution of Ni and Mo components in this electrode is naturally uniform, which can maximize the interaction between Ni and Mo and benefit the electrocatalysis. The thus-obtained Ni–Mo electrode exhibits a very high catalytic activity toward the HER: the current density reaches 700 mA/cm2 at 150 mV overpotential in 5 M KOH solution at 70 °C. This new fabrication method of Ni–Mo electrode is not only suitable for alkaline water electrolysis (AWE), but also applicable to the alkaline polymer electrolyte water electrolysis (APEWE), an emerging technique for efficient production of H2.  相似文献   

13.
Anion exchange membrane from poly(phenylene oxide) containing pendant quaternary ammonium groups is fabricated for application in alkaline polymer electrolyte fuel cells (APEFCs). Chloromethylation of poly(phenylene oxide) (PPO) was performed by aryl substitution and then homogeneously quaternized to form an anion exchange membrane (AEM). The influence of various parameters on the chloromethylation reaction was investigated and optimized. The successful introduction of the above groups in the polymer backbone was confirmed by 1H NMR and FT-IR spectroscopy. Membrane intrinsic properties such as ion exchange capacity, water uptake and ionic conductivity were evaluated. The membrane electrolyte exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane in APEFCs. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 was obtained for PPO based membrane in APEFCs at 30 °C.  相似文献   

14.
The preparation of proton conducting-polymer electrolytes based on poly(vinyl alcohol) (PVA)/ammonium acetate (CH3COONH4)/1-butyl-3-methylimidazolium chloride (BmImCl) was done by solution casting technique. The ionic conductivity increased with ionic liquid mass loadings. The highest ionic conductivity of (5.74 ± 0.01) mS cm−1 was achieved upon addition of 50 wt% of BmImCl. The thermal characteristic of proton conducting-polymer electrolytes is enhanced with doping of ionic liquid by showing higher initial decomposition temperature. The most conducting polymer electrolyte is stable up to 250 °C. Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR) confirmed the complexation between PVA, CH3COONH4 and BmImCl. Polymer electrolyte membrane fuel cell (PEMFC) was fabricated. This electrochemical cell achieved the maximum power density of 18 mW cm−2 at room temperature.  相似文献   

15.
A novel polymer-inorganic composite electrolyte for direct methanol alkaline fuel cells (DMAFCs) is prepared by physically blending fumed silica (FS) with polyvinyl alcohol (PVA) to suppress the methanol permeability of the resulting nano-composites. Methanol permeability is suppressed in the PVA/FS composite when comparing with the pristine PVA membrane. The PVA membrane and the PVA/FS composite are immersed in KOH solutions to prepare the hydroxide-conducting electrolytes. The ionic conductivity, cell voltage and power density are studied as a function of temperature, FS content, KOH concentration and methanol concentration. The PVA/FS/KOH electrolyte exhibits higher ionic conductivity and higher peak power density than the PVA/KOH electrolyte. In addition, the concentration of KOH in the PVA/FS/KOH electrolytes plays a major role in achieving higher ionic conductivity and improves fuel cell performance. An open-circuit voltage of 1.0 V and a maximum power density of 39 mW cm−2 are achieved using the PVA/(20%)FS/KOH electrolyte at 60 °C with 2 M methanol and 6 M KOH as the anode fuel feed and with humidified oxygen at the cathode. The resulting maximum power density is higher than the literature data reported for DMAFCs prepared with hydroxide-conducting electrolytes and anion-exchange membranes. The long-term cell performance is sustained during a 100-h continuous operation.  相似文献   

16.
As the key component of polymer electrolyte membrane fuel cells, the membrane has significant effect on the performance of fuel cells. The commonly used approach for preparation of membrane is solvent casting. In this paper, high temperature polymer electrolyte membranes consisting of sulfonated poly(ether ether ketone) and 1-butyl-3-methylimidazolium tetrafluoroborate were prepared using solvent casting process from N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone solutions to understand the solvent effect on the nature of formed membranes. It was found that solvents used for casting process strongly affect the microstructure and ionic conductivity of formed membranes. The composite membrane cast from DMF solution has clearly inter-connected ionic clusters with diameters of several hundreds nanometers to about 1.5 μm and exhibits the highest ionic conductivity, reaching 1.04 × 10−2 S cm−1 at 170 °C under anhydrous conditions.  相似文献   

17.
As a promising intermediate temperature fuel cell, Direct Carbon Fuel Cell (DCFC) with composite electrolyte composed of Samarium-Doped Ceria (SDC) and a binary carbonate phase (67 mol% Li2CO3/33 mol% Na2CO3) has a much higher efficiency compared with conventional power suppliers. In the present work, SDC powder has been synthesized by an oxalate co-precipitation process and used as solid support matrix for the composite electrolyte. Single cell with composite electrolyte layer is fabricated by a dry-pressing technique using LiNiO2/Li2Na2CO3/SDC as cathode and 1:9 (weight ratio) graphite mixture with 67 mol% Li2CO3/33 mol% Na2CO3 molten carbonate as anode. The cell is tested at 600–750 °C using electrolytical graphite mixture as fuel and O2/CO2 mixture as oxidant. A relatively good performance with high power density of 58 mW cm−2 at 700 °C is achieved for a DCFC using 0.8 mm thick composite electrolyte layer. The sensibility of the 1 cm2 DCFC single cell performance to the anode gas nature is also investigated. At temperatures higher than 700 °C, both carbon (C) and carbon monoxide (CO) can be considered as reacting fuel for the DCFC system.  相似文献   

18.
A series of modified anion conductive block poly(arylene ether sulfone) copolymer membranes containing a selective substituted unit, 15%, 20% and 25% 4,4′-(2,2-diphenylethenylidene) diphenol, were prepared for use in alkaline fuel cells. The anion exchange membranes were synthesized by first introducing chloromethyl groups. Quaternary ammonium groups could then be added to the tetra-phenyl ethylene units, followed by subsequent ion exchange. The tetra quaternary ammonium hydroxide polymers showed high molecular weights and exhibited high solubility in polar aprotic solvents. The block copolymer membrane showed higher ionic conductivity (21.37 mS cm−1) than the random polymer membrane of similar composition (17.91 mS cm−1). The membranes showed good chemical stability in 1.0 M KOH solution at 60 °C. They were characterized by 1H NMR, FT-IR, TGA and measurements of ion exchange capacity, water uptake and ionic conductivity.  相似文献   

19.
A composite of samarium doped ceria (SDC) and a binary carbonate eutectic (52 mol% Li2CO3/48 mol% Na2CO3) is investigated with respect to its morphology, conductivity and fuel cell performances. The morphology study shows the composition could prevent SDC particles from agglomeration. The conductivity is measured under air, argon and hydrogen, respectively. A sharp increase in conductivity occurs under all the atmospheres, which relates to the superionic phase transition in the interface phases between SDC and carbonates. Single cells with the composite electrolyte are fabricated by a uniaxial die-press method using NiO/electrolyte as anode and lithiated NiO/electrolyte as cathode. The cell shows a maximum power density of 590 mW cm−2 at 600 °C, using hydrogen as the fuel and air as the oxidant. Unlike that of cells based on pure oxygen ionic conductor or pure protonic conductor, the open circuit voltage of the SDC-carbonate based fuel cell decreases with an increase in water content of either anodic or cathodic inlet gas, indicating the electrolyte is a co-ionic (H+/O2−) conductor. The results also exhibit that oxygen ionic conductivity contributes to the major part of the whole conductivity under fuel cell circumstances.  相似文献   

20.
Alkaline polymer electrolyte fuel cells (APEFCs) are a new class of fuel cell that has been expected to combine the advantages of alkaline fuel cells (AFCs) and polymer electrolyte fuel cells (PEFCs). In recent decade, APEFCs have drawn much attention in the fuel cell world. While great efforts have been devoted to the development of high-performance alkaline polymer electrolytes (APEs), prototypes of APEFC using nonprecious metal catalysts in both the anode and the cathode have not been well implemented, except for our previous report where Ni–Cr was used as the anode catalyst and Ag was employed as the cathode catalyst. In the present work, we report our recent progress in this regard. The self-crosslinked quaternary ammonia polysulfone (xQAPS), a high-performance APE that possesses both good ionic conductivity and extremely high dimensional stability, is applied as both the electrolyte membrane and the ionomer impregnated in the electrodes. Carbon-supported Co-polypyrrole (CoPPY/C) is employed as the cathode catalyst and a new Ni-based catalyst, W-doped Ni, is used as the anode catalyst, which features in high oxidation tolerance. H2–O2 and H2-air APEFCs are thus fabricated and show a decent performance with peak power density being 40 and 27.5 mW/cm2 at 60 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号