首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The CuZnAl/HZSM-5, CuZnAlCr/HZSM-5, CuZnAlZr/HZSM-5, CuZnAlCo/HZSM-5, and CuZnAlCe/HZSM-5 catalysts that were prepared by a co-precipitation method was used for hydrogen production from steam reforming of dimethyl ether (SRD) in a metal foam micro-reactor. These catalysts were characterized by means of XRD, TPR, SEM and BET surface areas. The results showed that promoter Cr can reduce the average pore diameter and reduction temperature of catalyst. The conversion of dimethyl ether and hydrogen yield reaches 99% and 95% respectively over CuZnAlCr/HZSM-5 catalyst under a relatively lower reaction temperature. The obtained hydrogen-riched gas is easy to purify and meet the need of polymer electrolyte membrane fuel cell. The effects of reaction temperature, space velocity and steam to DME ratio on SRD were investigated in a metal foam micro-reactor. At the conditions of T = 250 °C, the space velocity of 3884 ml/(g h), steam to DME = 5, DME conversion of >97% were obtained over the CuZnAlCr/HZSM-5 catalyst without obvious deactivation during 50 h.  相似文献   

2.
A study has been carried out on the effect of combining the metallic (CuO–ZnO–Al2O3) and acid (HZSM-5 zeolite treated with NaOH) functions, and of their mass ratio, on the kinetic performance in the steam reforming of dimethyl ether (SRD). The runs have been conducted in a fluidized bed reactor in the 225–325 °C range, and the reaction indices (dimethyl ether and methanol conversions, and H2 and CO yields) have been explained based on the physico-chemical properties of the catalyst.  相似文献   

3.
The long-term performance of the bifunctional catalyst composed of MgO-modified H-ZSM-5 and Cu/ZnO/Al2O3 for steam reforming of dimethyl ether (SRD) is studied under the same conditions. Although the surface chemical state and acid property of 1.55–2.47 wt% MgO modified H-ZSM-5 are almost the same, a significant impact of MgO contents on the stability of the bifunctional catalyst is observed from the 50 h SRD results. The initial dimethyl ether conversion (around 100%) and H2 yield (∼95%) over the optimal bifunctional catalyst with 2.17 wt% MgO modified H-ZSM-5 is still kept over 90% at 50 h. Combining the characterization data of spent catalysts and SRD results, the synergetic effect between the MgO-modified H-ZSM-5 and Cu/ZnO/Al2O3 is rigorously revealed as the key factor in determining the stability of the bifunctional catalyst for SRD. These results demonstrate that MgO-modified H-ZSM-5 is a promising and efficient solid acid for SRD.  相似文献   

4.
To enhance the heat and mass transfer during dimethyl ether (DME) steam reforming, a micro-reactor with catalyst coated on nickel foam support was designed and fabricated. A two-dimensional numerical model with SIMPLE algorithm and finite volume method was used to investigate 1) the fluid flow, 2) the heat transfer and 3) chemical reactions consist of DME hydrolysis, methanol steam reforming, methanol decomposition and water gas shift reactions. Both the numerical and the experimental results showed that the DME conversion in the micro-reactor is higher than that in the fixed bed reactor. The numerical study also showed that the velocity and the temperature distribution were more uniform in the micro-reactor. Wall temperature, porosity and steam/DME ratio have been investigated in order to optimize the process in the micro-reactor. The wall temperature of 270 °C and the steam/DME feed ratio of 5 were recommended. Meanwhile the results indicate that a larger porosity will give a higher DME conversion and CO concentration.  相似文献   

5.
Methanol, dimethyl ether and bioethanol steam reforming to hydrogen-rich gas were studied over CuO/CeO2 and CuO–CeO2/γ-Al2O3 catalysts. Both catalysts were found to provide complete conversion of methanol to hydrogen-rich gas at 300–350 °C. Complete conversion of dimethyl ether to hydrogen-rich gas occurred over CuO–CeO2/γ-Al2O3 at 350–370 °C. Complete conversion of ethanol to hydrogen-rich gas occurred over CuO/CeO2 at 350 °C. In both cases, the CO content in the obtained gas mixture was low (<2 vol.%). This hydrogen-rich gas can be used directly for fuelling high-temperature PEM FC. For fuelling low-temperature PEM FC, it is needed only to clean up the hydrogen-rich gas from CO to the level of 10 ppm. CuO/CeO2 catalyst can be used for this purpose as well. Since no individual WGS stage, that is necessary in most other hydrogen production processes, is involved here, the miniaturization of the multifuel processor for hydrogen production by methanol, ethanol or DME SR is quite feasible.  相似文献   

6.
Pd–Rh/metal foam catalyst was studied for steam methane reforming and application to SOFC fuel processing. Performance of 0.068 wt% Pd–Rh/metal foam catalyst was compared with 13 wt% Ni/Al2O3 and 8 wt% Ru/Al2O3 catalysts in a tubular reactor. At 1023 K with GHSV 2000 h−1 and S/C ratio 2.5, CH4 conversion and H2 yield were 96.7% and 3.16 mol per mole of CH4 input for Pd–Rh/metal foam, better than the alumina-supported catalysts. In 200 h stability test, Pd–Rh/metal foam catalyst exhibited steady activity. Pd–Rh/metal foam catalyst performed efficiently in a heat exchanger platform reactor to be used as prototype SOFC fuel processor: at 983 K with GHSV 1200 h−1 and S/C ratio 2.5, CH4 conversion was nearly the same as that in the tubular reactor, except for more H2 and CO2 yields. Used Pd–Rh/metal foam catalyst was characterized by SEM, TEM, BET and CO chemisorption measurements, which provided evidence for thermal stability of the catalyst.  相似文献   

7.
HZSM-5 zeolites are active materials in dimethyl ether (DME) production with high surface acidity. In this study, hierarchical HZSM-5 catalysts were synthesized with steam-assisted crystallization (SAC) method and then in order to increase its surface acidity, TPA was loaded into the HZSM-5 catalyst having various mass ratios (5, 10, 25%) by wet impregnation method. Synthesized catalysts were characterized by N2 physisorption (BET analysis), X-Ray diffraction and pyridine adsorbed diffuse reflectance FTIR spectroscopy techniques. Characterization analysis of tungstophosphoric acid (TPA) impregnated catalysts indicated that hierarchical HZSM-5 possesses mesoporous structures. The average pore size distribution of TPA impregnated HZSM-5 catalysts were between 17 and 20 nm. TPA impregnation promoted Brønsted acid sites of the catalyst, which favors methanol dehydration reaction. Activity tests have been performed at reaction temperatures of 200–300 °C at 50 bar reaction pressure in the presence of admixed catalysts (physically mixed commercial HifuelR-120 and HZSM-5 based catalysts with a weight ratio of 1:1). Results revealed that the increase in the amount of heteropoly acid has enhanced DME selectivity and CO conversion. Maximum DME selectivity of 57% and CO conversion of 46% were achieved in the presence of the 25TPA@HZSM-5 catalyst at the optimum reaction temperature of 275 °C. TGA analysis result of spent catalysts presented the highest amount of coke over HZSM-5. TPA incorporation decreased coke formation due to suppression of the Lewis acid site, which is responsible for the coke formation.  相似文献   

8.
Hydrogen production by steam reforming of ethanol (SRE) was studied using steam-to-ethanol ratio of 3:1, between the temperature range of 150–450 °C over metal and metal oxide nanoparticle catalysts (Ni, Co, Pt and Rh) supported on carbon nanotubes (CNTs) and compared to a commercial catalyst (Ni/Al2O3). The aim was to find out the suitability of CNTs supports with metal nanoparticles for the SRE reactions at low temperatures. The idea to develop CNT-based catalysts that have high selectivity for H2 is one of the driving forces for this study. The catalytic performance was evaluated in terms of ethanol conversion, product gas composition, hydrogen yield and selectivity to hydrogen. The Co/CNT and Ni/CNT catalysts were found to have the highest activity and selectivity towards hydrogen formation among the catalysts studied. Almost complete ethanol conversion is achieved over the Ni/CNT catalyst at 400 °C. The highest hydrogen yield of 2.5 is, however, obtained over the Co/CNT catalyst at 450 °C. The formation of CO and CH4 was very low over the Co/CNT catalyst compared to all the other tested catalysts. The Pt and Rh CNT-based catalysts were found to have low activity and selectivity in the SRE reaction. Hydrogen production via steam reforming of ethanol at low temperatures using especially Co/CNT catalyst has thus potential in the future in e.g. the fuel cell applications.  相似文献   

9.
Alumina supported Pt group metal monolithic catalysts were investigated for selective oxidation of CO in hydrogen-rich methanol reforming gas for proton exchange membrane fuel cell (PEMFC) applications. The results are described and discussed in the present paper and show that Pt/γAl2O3Pt/γAl2O3 was the most promising candidate to selectively oxidize CO from an amount of about 1 vol% to less than 100 ppm. We have investigated the effect of the O2 to CO feed ratio, the feed concentration of CO, the presence of H2O and/or CO2, and the space velocity on the activity, selectivity and stability of Pt/Al2O3 monolithic catalysts. Afterwards, the Pt/Al2O3 catalyst was scaled up and applied in 5 kW hydrogen producing systems based on methanol steam reforming and autothermal reforming. The hydrogen produced was then used as fuel for an integrated PEMFC.  相似文献   

10.
This work presents the characteristics of catalytic dimethyl ether (DME)/steam reforming based on a Cu–Zn/γ-Al2O3 catalyst for hydrogen production. A kinetic model for a reformer that operates at low temperature (200 °C–500 °C) is simulated using COMSOL 5.2 software. Experimental verification is performed to examine the critical parameters for the reforming process. During the experiment, superior Cu–Zn/γ-Al2O3catalysts are manufactured using the sol-gel method, and ceramic honeycombs coated with this catalyst (1.77 g on each honeycomb, five honeycombs in the reactor) are utilized as catalyst bed in the reformer to enhance performance. The steam, DME mass ratio is stabilized at 3:1 using a mass flow controller (MFC) and a generator. The hydrogen production rate can be significantly affected depending on the reactant's mass flow rate and temperature. And the maximum hydrogen yield can reach 90% at 400 °C. Maximum 8% error for the hydrogen yield is achieved between modeling and experimental results. These experiments can be further explored for directly feeding hydrogen to proton exchange membrane fuel cell (PEMFC) under the load variations.  相似文献   

11.
The reforming of ethanol for hydrogen production was carried out in this study. The effects of ethanol supply rate, catalysts, O2/EtOH and different energy-saving approaches on the reforming temperature, H2 + CO (syngas) concentration and thermal efficiency were investigated. The results showed that the best H2 + CO concentration of 43.41% could be achieved by using rhodium (Rh), while the next best concentration of about 42.08% could be obtained using ruthenium (Ru). The results also showed that the conversion efficiency of ethanol, concentrations of H2 and CO, and the energy loss ratio could be improved by heat insulation and heat recycling; and the improvement in the reforming performance was greater by the Ru catalyst rather than by the Rh catalyst with the energy-saving approaches. The greatest improvement in hydrogen production was achieved when using the Ru catalyst with the addition of steam and heat recycling system under an O2/EtOH ratio of 0.625 and S/C ratio of 1.0.  相似文献   

12.
This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.  相似文献   

13.
Proton exchange membrane fuel cells are widely employed in micro combined heat and power cogeneration (micro-CHP) systems, and the feed to them should be essentially free of CO. CO preferential oxidation is an effective method for the thorough removal of CO from synthesis gas. A series of K–Pt/γ-Al2O3 catalysts are prepared and tested for their CO cleaning capabilities. The catalyst is prepared from potassium nitrate acid, chloroplatinic acid and γ-Al2O3 powder by normal or ultrasonic impregnation. The catalyst performance is investigated in a micro-reactor system. The effects of K loading, Pt loading, ultrasonic processing, space velocity, O2-to-CO ratio and operation temperature on catalyst performance are studied. A CO concentration of less than 10 ppm is achieved when the CO concentration in the feed gas is 0.45%. It was found that both ultrasonic processing and the addition of K promote the catalyst performance. The 15K1.0Pt/Al–U catalyst exhibits the best performance.  相似文献   

14.
通过浸渍沉淀法结合程序升温碳化法制备了Mo2C/Al2O3复合催化剂,并应用于二甲醚水蒸气重整催化体系的研究。考察了二甲醚水解催化载体、水解功能组分Al2O3与重整功能组分Mo2C的比例、反应物浓度对复合催化剂活性的影响。结果表明,β-Mo2C与γ-Al2O3载体以Mo/Al = 1/1耦合后能够高效催化二甲醚重整制氢,其最佳进料水醚比为5,最适反应温度为400℃。  相似文献   

15.
A series of ZnO–Al2O3 catalysts with various ZnO/(ZnO + Al2O3) molar ratios have been developed for hydrogen production by dimethyl ether (DME) steam reforming within microchannel reactor. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction and temperature programmed desorption of NH3. It was found that the catalytic activity was strongly dependent on the catalyst composition. The overall DME reforming rate was maximized over the catalyst with ZnO/(ZnO + Al2O3) molar ratio of 0.4, and the highest H2 space time yield was 315 mol h−1·kgcat−1 at 460 °C. A bi-functional mechanism involving catalytic active site coupling has been proposed to account for the phenomena observed. An optimized bi-functional DME reforming catalyst should accommodate the acid sites and methanol steam reforming sites with a proper balance to promote DME steam reforming, whereas all undesired reactions should be impeded without sacrificing activity. This work suggests that an appropriate catalyst composition is mandatory for preparing good-performance and inexpensive ZnO–Al2O3 catalysts for the sustainable conversion of DME into H2-rich reformate.  相似文献   

16.
Oxidative steam reforming of propane was tested over four Pt–Ni/δ-Al2O3 bimetallic catalysts aiming to investigate the effect of metal loadings and Ni:Pt loading ratio on catalyst performance. A trimetallic Pt–Ni–Au/δ-Al2O3 catalyst was additionally studied aiming to understand the effect of Au presence. Reaction temperature, carbon to oxygen ratio, and residence time were taken as the reaction parameters. The effect of C/O2 ratio on the hydrogen production and H2/CO selectivity was found dependent on the Pt and Ni loadings. The results underlined the importance of C/O2 ratio as an optimization parameter for product distribution. The highest hydrogen production and H2/CO ratio levels were obtained for the highest C/O2 ratio tested. An optimum Ni:Pt weight ratio was found around 50 due to suppressed methanation and enhanced hydrogen production activities of these catalysts. The presence of gold in the trimetallic catalyst caused poor activity and selectivity in comparison to bimetallic catalysts.  相似文献   

17.
The concentration of CO in the high-purity hydrogen from sorption-enhanced steam reforming (SESR) processes is usually too high to be directly used in fuel cells. Herein, we report a production of fuel-cell grade H2 with <30 ppm CO through SESR of glycerol (SESRG), a by-product of biodiesel manufacture. High purity H2 can be produced by employing a catalyst-sorbent hybrid material composed of Ni as catalyst, CaO as CO2 sorbent and Ca12Al14O33 as spacer. By introducing copper as promoter, the performance of the bi-functional catalyst could be modified to produce a 97.15 vol% purity of H2 with 28 ppm CO. With an optimized Ni/Cu ratio, the 7.5Ni–7.5Cu catalyst shows the excellent stability for producing about 97% H2 with <30 ppm CO for ten cycles. The characterizations and model reaction tests indicate that copper can affect CO, CO2 hydrogenation and water gas shift reaction to adjust the performance of SESRG reaction. The results presented here show the promise of tuning the catalyst composition for achieving high quality H2 through SESR processes.  相似文献   

18.
This paper presents thermodynamic analysis of commercial diesel with 50 ppm sulfur content for the three common modes of reforming operations. Thermodynamic analysis is done to get boundary data for carbon formation and to get the composition of various species for all modes and entire range of operations. For steam reforming operation, steam-to-carbon (S/C) ratio equal to or greater than 2 is required for carbon-free operation in entire temperature range (400–800 °C). However, selection of S/C ratio requires the balance between maximizing the hydrogen yield and minimizing the energy input both of which increase with increasing S/C ratio. For partial oxidation operation, O2/C ratio of 0.75 is preferable to maximize hydrogen yield but carbon formation can occur if regions of reactor experience temperatures lower than 700 °C. In case of autothermal reforming, for carbon-free operation, temperature of 750 °C, O2/C ratio in the range of 0.125–0.25 and S/C ratio greater than 1.25 and ideally 1.75 is recommended. However, enthalpy analysis indicates that it is not possible to reach to thermoneutral point at this condition so it is better to operate O2/C ratio 0.25 or little higher with constant heat supply. A set of three independent reactions is proposed that along with element balance equations can adequately describe the equilibrium composition of six major species—H2, CO2, CO, H2O, CH4, and C for the entire range of reforming operation.  相似文献   

19.
A numerical simulation of methanol steam reforming in a microreactor integrated with a methanol micro-combustor is presented. Typical Cu/ZnO/Al2O3 and Pt catalysts are considered for the steam reforming and combustor channels respectively. The channel widths are considered at 700 μm in the baseline case, and the reactor length is taken at 20 mm. Effects of Cu/ZnO catalyst thickness, gas hourly space velocities of both steam reforming and combustion channels, reactor geometry, separating substrate properties, as well as inlet composition of the steam reforming channel are investigated. Results indicate that increasing catalyst thickness will enhance hydrogen production by about 68% when the catalyst thickness is increased from 10 μm to 100 μm. Gas space velocity of the steam reforming channel shows an optimum value of 3000 h−1 for hydrogen yield, and the optimum value for the space velocity of the combustor channel is calculated at 24,000 h−1. Effects of inlet steam to carbon ratio on hydrogen yield, methanol conversion, and CO generation are also examined. In addition, effects of the separating substrate thickness and material are examined. Higher methanol conversion and hydrogen yield are obtained by choosing a thinner substrate, while no significant change is seen by changing the substrate material from steel to aluminum with considerably different thermal conductivities. The produced hydrogen from an assembly of such microreactor at optimal conditions will be sufficient to operate a low-power, portable fuel cell.  相似文献   

20.
《Journal of power sources》2006,155(2):340-352
Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00–2.80), steam-to-carbon ratio (0.00–4.00), temperature (100 °C–600 °C), pressure (1–5 atm) and product species.Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H2, CO, CO2, DME, NH3 and H2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed.Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40–2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam-to-carbon ratio of 0.00 in the temperature range of 400 °C–500 °C. Increasing the system pressure shifts the equilibrium toward ammonia and hydrogen cyanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号