首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To reduce criteria pollutant emissions and greenhouse gases from mobile sources, the use of hydrogen as a transportation fuel is proposed as a new paradigm in combination with fuel cells for vehicle power. The extent to which reductions can and will occur depends on the mix of technologies that constitute the hydrogen supply chain. This paper introduces an analysis and planning methodology for estimating emissions, greenhouse gases, and the energy efficiency of the hydrogen supply chain as a function of the technology mix on a life cycle, well to wheels (WTW) basis. The methodology, referred to as the preferred combination assessment (PCA) model, is demonstrated by assessing an illustrative set of hydrogen infrastructure (generation and distribution) deployment scenarios in California's South Coast Air Basin. Each scenario reflects a select mix of technologies for the years 2015, 2030, and 2060 including (1) the proportion of fossil fuels and renewable energy sources of the hydrogen and (2) the rate of hydrogen fuel cell vehicle adoption. The hydrogen deployment scenarios are compared to the existing paradigm of conventional vehicles and fuels with a goal to reveal and evaluate the efficacy and utility of the PCA methodology. In addition to a demonstration of the methodology, the salient conclusions reached from this first application include the following.
Emissions of criteria pollutants increase or decrease, depending on the hydrogen deployment scenario, when compared to an evolution of the existing paradigm of conventional vehicles and fuels.  相似文献   

2.
A transition from gasoline internal combustion engine vehicles to hydrogen fuel cell electric vehicles (FCEVs) is likely to emerge as a major component of the strategy to meet future greenhouse gas reduction, air quality, fuel independence, and energy security goals. Advanced infrastructure planning can minimize the cost of hydrogen infrastructure while assuring that energy and environment benefits are achieved. This study presents a comprehensive advanced planning methodology for the deployment of hydrogen infrastructure, and applies the methodology to delineate fully built-out infrastructure strategies, assess the associated energy and environment impacts, facilitate the identification of an optimal infrastructure roll-out strategy, and identify the potential for renewable hydrogen feedstocks. The South Coast Air Basin of California, targeted by automobile manufacturers for the first regional commercial deployment of FCEVs, is the focus for the study. The following insights result from the application of the methodology:
Compared to current gasoline stations, only 11%-14% of the number of hydrogen fueling stations can provide comparable accessibility to drivers in a targeted region.
To meet reasonable capacity demand for hydrogen fueling, approximately 30% the number of hydrogen stations are required compared to current gasoline stations.
Replacing gasoline vehicles with hydrogen FCEVs has the potential to (1) reduce the emission of greenhouse gases by more than 80%, reduce energy requirements by 42%, and virtually eliminate petroleum consumption from the passenger vehicle sector, and (2) significantly reduce urban concentrations of ozone and PM2.5.
Existing sources of biomethane in the California South Coast Air Basin can provide up to 30% of the hydrogen fueling demand for a fully built-out hydrogen FCEV scenario.
A step-wise transition of judiciously located existing gasoline stations to dispense and accommodate the increasing demand for hydrogen addresses proactively key infrastructure deployment challenges including a viable business model, zoning, permitting, and public acceptance.
  相似文献   

3.
4.
The introduction of hydrogen infrastructure and fuel cell vehicles (FCVs) to gradually replace gasoline internal combustion engine vehicles can provide environment and energy security benefits. The deployment of hydrogen fueling infrastructure to support the demonstration and commercialization of FCVs remains a critical barrier to transitioning to hydrogen as a transportation fuel. This study utilizes an engineering methodology referred to as the Spatially and Temporally Resolved Energy and Environment Tool (STREET) to demonstrate how systematic planning can optimize early investments in hydrogen infrastructure in a way that supports and encourages growth in the deployment of FCVs while ensuring that the associated environment and energy security benefits are fully realized. Specifically, a case study is performed for the City of Irvine, California – a target area for FCV deployment – to determine the optimized number and location of hydrogen fueling stations required to provide a bridge to FCV commercialization, the preferred rollout strategy for those stations, and the environmental impact associated with three near-term scenarios for hydrogen production and distribution associated with local and regional sources of hydrogen available to the City. Furthermore, because the State of California has adopted legislation imposing environmental standards for hydrogen production, results of the environmental impact assessment for hydrogen production and distribution scenarios are measured against the California standards. The results show that significantly fewer hydrogen fueling stations are required to provide comparable service to the existing gasoline infrastructure, and that key community statistics are needed to inform the preferred rollout strategy for the stations. Well-to-wheel (WTW) greenhouse gas (GHG) emissions, urban criteria pollutants, energy use, and water use associated with hydrogen and FCVs can be significantly reduced in comparison to the average parc of gasoline vehicles regardless of whether hydrogen is produced and distributed with an emphasis on conventional resources (e.g., natural gas), or on local, renewable resources. An emphasis on local renewable resources to produce hydrogen further reduces emissions, energy use, and water use associated with hydrogen and FCVs compared to an emphasis on conventional resources. All three hydrogen production and distribution scenarios considered in the study meet California's standards for well-to-wheel GHG emissions, and well-to-tank emissions of urban ROG and NOX. Two of the three scenarios also meet California's standard that 33% of hydrogen must be produced from renewable feedstocks. Overall, systematic planning optimizes both the economic and environmental impact associated with the deployment of hydrogen infrastructure and FCVs.  相似文献   

5.
The aim of this paper is to review the factors already discussed in the literature and identify gaps or issues which seem to require further debate in relation of the introduction of hydrogen in the transport sector. Studies in the academic and grey literature have analysed transport systems with a rather wide range of hydrogen penetration rates, utilisation of the infrastructure, hypotheses on the dynamics of the systems, capital costs of the infrastructure and hydrogen price. Most of the issues which could widen the debate in the literature are related to policy instruments. In particular, more attention should be paid to the policy instruments needed to foster co-ordination among stakeholders, persuade drivers to buy hydrogen vehicles despite the existence of a sparse infrastructure; guarantee investment in the early, possibly loss-making, retail stations and to foster financially sustainable government commitments. The effect of limited availability of hydrogen vehicle models on the penetration rates in the literature and the sensitivity of the hydrogen price to taxation from the government are other two issues deserving a more in-depth discussion.  相似文献   

6.
Fuel cell vehicles have a high potential to reduce both energy consumption and carbon dioxide emissions. However, due to the low density, hydrogen gas limits the amount of hydrogen stored on board. This restriction also prevents wide penetration of fuel cells. Hydrogen storage is the key technology towards the hydrogen society. Currently high-pressure tanks and liquid hydrogen tanks are used for road tests, but both technologies do not meet all the requirements of future fuel cell vehicles. This paper briefly explains the current status of conventional technologies (simple containment) such as high-pressure tank systems and cryogenic storage. Another method, hydrogen-absorbing alloy has been long investigated but it has several difficulties for the vehicle applications such as low temperature discharge characteristics and quick charge capability due to its reaction heat. We tested a new idea of combining metal hydride and high pressure. It will solve some difficulties and improve performance such as gravimetric density. This paper describes the latest material and system development.  相似文献   

7.
This study assumes a high penetration of hydrogen-fuelled vehicles for Germany in 2050 and investigates the structure of a potential pipeline network for hydrogen transmission and distribution under different scenarios for H2 production and demand. All data are georeferenced for their computation and displayed within a Geographical Information System (GIS) environment.  相似文献   

8.
The development and application of a hydrogen dual sensor (HDS) for the application in the fuel cell (FC) field, is reported. The dual sensing device is based on a ceramic platform head with a semiconducting metal oxide layer (MOx) printed on Pt interdigitated contacts on one side and a Pt serpentine resistance on the back side. MOx layer acts as a conductometric (resistive) gas sensor, allowing to detect low H2 concentrations in air with high sensitivity and fast response, making it suitable as a leak hydrogen sensor. The proposed Co-doped SnO2 layer shows high sensitivity to hydrogen (R0/R = 90, for 2000 ppm of H2) at 250 °C in air, and with fast response (<3 s). Pt resistance serves as a thermal conductivity sensor, and can used to monitor the whole range of hydrogen concentration (0–100%) in the fuel cell feed line with short response-recovery times, lower than 13 s and 14 s, respectively. The effect of the main functional parameters on the sensor response have been evaluated by bench tests. The results demonstrate that the dual sensor, in spite of its simplicity and cheapness, is promising for application in safety and efficiency control systems for FC power source.  相似文献   

9.
A public survey was conducted in March 2015 in Japan asking public awareness, knowledge, perception and acceptance regarding hydrogen, hydrogen infrastructure and fuel cell vehicle. Changes in answers were found by comparing results of current survey to those of the two previous surveys that were conducted six and seven years ago. We found a large increase in the awareness and relatively a small improvement on knowledge on hydrogen energy, hydrogen infrastructure and fuel cell vehicle from the previous surveys. In contrast we did not find much changes in perception of risk and benefit on hydrogen society and hydrogen station and public acceptance of hydrogen infrastructure. Through the regression analyses we found the small influence of time background as well as the influence of risk and benefit perception of hydrogen infrastructure on the acceptance. In conclusion, we find people have become a little more positive about hydrogen infrastructure in the baseline but more cautious about the risk and benefits. This can be interpreted as a change in the quality of perception and acceptance, that is, the favorable prejudice to hydrogen energy and fuel cell technologies has changed towards a slightly more rational support.  相似文献   

10.
The paper provides brief introduction to the National South African Program, branded HySA (Hydrogen South Africa) as well as discusses potential business cases for deployment of hydrogen and fuel cell technology in South Africa. This paper also describes some key activities in the area of hydrogen production and storage within HySA Infrastructure Center of Competence in South Africa. The content of this paper is based on the presentation given during the recent WHEC 2016 Congress in Zaragoza, Spain. More specifically, the discussion of activities at HySA Infrastructure Center of Competence in the paper includes hydrogen production and storage.  相似文献   

11.
A key factor in developing a hydrogen based transport economy is to ensure the establishment of a strong and reliable hydrogen fuel supply chain, from production and distribution, to storage and finally the technology to dispense the hydrogen into the vehicle.  相似文献   

12.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

13.
The uncertain role of the natural gas infrastructure in the decarbonized energy system and the limitations of hydrogen blending raise the question of whether natural gas pipelines can be economically utilized for the transport of hydrogen. To investigate this question, this study derives cost functions for the selected pipeline reassignment methods. By applying geospatial hydrogen supply chain modeling, the technical and economic potential of natural gas pipeline reassignment during a hydrogen market introduction is assessed.The results of this study show a technically viable potential of more than 80% of the analyzed representative German pipeline network. By comparing the derived pipeline cost functions, it could be derived that pipeline reassignment can reduce the hydrogen transmission costs by more than 60%. Finally, a countrywide analysis of pipeline availability constraints for the year 2030 shows a cost reduction of the transmission system by 30% in comparison to a newly built hydrogen pipeline system.  相似文献   

14.
Hydrogen is widely recognised as an important option for future road transportation, but a widespread infrastructure must be developed if the potential for hydrogen is to be achieved. This paper and related appendices which can be downloaded as Supplementary material present a mixed-integer linear programming model (called SHIPMod) that optimises a hydrogen supply chains for scenarios of hydrogen fuel demand in the UK, including the spatial arrangement of carbon capture and storage infrastructure. In addition to presenting a number of improvements on past practice in the literature, the paper focuses attention on the importance of assumptions regarding hydrogen demand. The paper draws on socio-economic data to develop a spatially detailed scenario of possible hydrogen demand. The paper then shows that assumptions about the level and spatial dispersion of hydrogen demand have a significant impact on costs and on the choice of hydrogen production technologies and distribution mechanisms.  相似文献   

15.
Odorants have been proposed as a reliable, inexpensive means to enable leak detection for hydrogen systems and increase public safety. However, traditional odorants cause problems for fuel cell systems. This paper examines the use of odorants for fuel cell systems, including the hydrogen storage. Current odorants and potential odorants have negative impacts on fuel cell performance. Odorants also appear to be problematic for most of the advanced hydrogen storage options. If odorants are used, the odorants will probably need to be removed from the hydrogen prior to the storage medium. Current hydrogen detectors are more reliable than the odorant–human detection system and should provide increased safety.  相似文献   

16.
Sustainable energy is becoming of increasing concern world-wide. The rapid growth of global climate changes along with the fear of energy supply shortage is creating a large consensus about the potential benefits of a hydrogen economy coming from renewable energy sources. The interesting perspectives are over-shadowed by uncertainties about the development of key technologies, such as renewable energy sources, advanced production processes, fuel cells, metal hydrides, nanostructures, standards and codes, and so on. The availability of critical technologies can create a base for the start of the hydrogen economy, as a fuel and energy carrier alternative to the current fossil resources. This paper will explore the rationale for such a revolution in the energy sector, will describe the state-of-the-art of major related technologies (fuel cell, storage systems, fuel cell vehicles) and current niche applications, and will sketch scientific and technological challenges and recommendations for research and development (R&D) initiatives to accelerate the pace for the widespread introduction of a hydrogen economy.  相似文献   

17.
The present work features an analysis of the current state of Romania's current policy in the context of hydrogen economy. The possibilities and limitations concerning the transition towards the hydrogen economy in Romania are discussed taking into account a number of aspects, including: the degree of development of the electric power infrastructure, aspects from petrochemical and agrochemical industry, transport infrastructure, socioeconomic development indicators, activity and dynamics of the scientific community and attitude of central authorities. All these are important aspects that contribute to technology deployment. The article presents both advantages and disadvantages from Romania, provides concrete examples, gives information, makes comparisons and provides recommendations, taking into account national aspects. Key areas of promise for hydrogen technologies in Romania are identified. The paper concludes with recommendations for actions in order to begin the process of transition towards a hydrogen economy.  相似文献   

18.
One major issue that is source of uncertainty holding back the hydrogen deployment, is the infrastructure development needs and costs. Different studies in the literature tackled this issue in France but partially, assessing either one part of the hydrogen supply chain or the whole supply chain but for one possible delivery pathway. This paper compares five hydrogen pathways, going from the production step up to the fuelling station and tackling pipeline and truck options. In order to capture the time evolution aspect of the infrastructure deployment needs, three demand scenarios are investigated, going from 1% of market penetration up to 15%. Additionally, two scenarios are taken into account when it comes to the location of the hydrogen production sites vis-à-vis the demand centres. According to the results, economies of scale that can be driven by higher market penetration rates have significant impact on lowering the hydrogen cost.  相似文献   

19.
A hydrogen dispensing facility capable of providing rapid 70-MPa vehicle fills became operational in May 2011 as the first such hydrogen dispensing facility in Northern California. The facility is operated by the University of California – Berkeley in support of fuel cell vehicle research with automakers, regional and state agencies, and industrial groups. In addition to storing and dispensing high-pressure hydrogen fuel, the station also incorporates a number of key advances in hydrogen refueling system capabilities, including novel fuel pre-cooling, fuel storage, and system safety systems. Key lessons learned from the construction and initial operation of the station include: 1) extensive initial planning is essential for smooth project development; 2) permitting is a key step and early engagement with local officials is critical; 3) extensive safety reviews may be required; 4) site work should be conducted with careful planning and execution; 5) methodical system commissioning is a key step in the project development process; 6) careful station maintenance and operational planning is critical for minimization of station downtime; and 7) station upkeep and utility expenses can be considerable.  相似文献   

20.
Standards fix the parameters of technology development, as we know. They are catalysts of entrenchment and as such sooner inhibit than enhance system evolution. But increasingly studies are done which argue the opposite: standards can also increase system flexibility. This paper falls within the latter tradition, which is of studies that explore the conditions and restrictions to the flexibility claim. The question addressed here is to what extent the Wobbe index, a pivotal standard for gas distribution in the Netherlands, can facilitate the transition towards a more sustainable energy system (that is, a hydrogen economy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号