首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computation of Proton Exchange Membrane (PEM) fuel cell's cathode Catalyst Layer (CL) is performed using agglomerate models in this paper, and the results are compared with homogenous one. Following our earlier homogenous model for cathode CL (see Khajeh-Hosseini et al., 2010), the focus of the present study is on agglomerate model. In this study, the derivation of agglomerate model is performed in such a way that in the simplified case when agglomerate sizes shrink to zero, the homogeneous model condition is retrieved. Validations versus two sets of experimental data are performed. For example, in one of the validation cases, Case (II), it is observed that in Itot = 3000 [A m−2] the homogeneous model overestimates the performance by 80%. But the agglomerate model agrees well with the validating test cases. A set of parametric studies are performed using the agglomerate model, in which the influences of some CL structural- and cell operating-parameters are studied. A sensitivity study on the cell performance is performed to rank the influence of the parameters, with rank 1 for the most influential parameter. It is observed the agglomerate sizes possess rank 1. These results give useful guidelines for manufactures of PEMFC catalyst layers.  相似文献   

2.
In this work, a three-dimensional, steady-state, multi-agglomerate model of cathode catalyst layer in polymer electrolyte membrane (PEM) fuel cells has been developed to assess the activation polarization and the current densities in the cathode catalyst layer. A finite element technique is used for the numerical solution to the model developed. The cathode activation overpotentials, and the membrane and solid phase current densities are calculated for different operating conditions. Three different configurations of agglomerate arrangements are considered, an in-line and two staggered arrangements. All the three arrangements are simulated for typical operating conditions inside the PEM fuel cell in order to investigate the oxygen transport process through the cathode catalyst layer, and its impact on the activation polarization. A comprehensive validation with the well-established two-dimensional “axi-symmetric model” has been performed to validate the three-dimensional numerical model results. Present results show a lowest activation overpotential when the agglomerate arrangement is in-line. For more realistic scenarios, staggered arrangements, the activation overpotentials are higher due to the slower oxygen transport and lesser passage or void region available around the individual agglomerate. The present study elucidates that the cathode overpotential reduction is possible through the changing of agglomerate arrangements. Hence, the approaches to cathode overpotential reduction through the optimization of agglomerate arrangement will be helpful for the next generation fuel cell design.  相似文献   

3.
In this paper, a pore network model is developed to investigate the coupled transport and reaction processes in the cathode catalyst layer (CCL) of proton exchange membrane fuel cell (PEMFC). The developed model is validated by comparing the predicted polarization curve with the experimental data, and the parametric studies are carried out to elucidate the effects of CCL design parameters. With the decrease of the CCL thickness and the Nafion content, the cell voltage reduces at the low current density but increases when the current density is higher. The cell performance is also improved by increasing the proton conductivity of the Nafion film in the CCL. As compared to the CCL of uniformly distributed Nafion, the CCL with the Nafion volume decreasing along the thickness direction exhibits better performance at the high current density.  相似文献   

4.
We have verified the effectiveness of ionomer as a carrier of oxygen to improve cold start-up of proton exchange membrane fuel cells. Galvanostatic cold start was performed on proton exchange membrane fuel cells to evaluate the effect of ionomer content in the catalyst layer on the durability of power generation at −30 °C. Cell voltage and internal resistance were measured, and polarization analysis was conducted to evaluate the cell voltage reduction. Cold start-up durability improved significantly with higher ionomer content in the catalyst layer because of higher oxygen permeation of ice formed in the catalyst layer. These results enable robust design of membrane electrode assemblies for cold start-up.  相似文献   

5.
Fuel cell systems are environmentally friendly energy converters that directly transform the chemical energy of the fuel to electricity. The proton exchange membrane (PEM) fuel cells are one of the most common type of fuel cells since they deliver high power density and are lighter and smaller when compared to the other cells. However, commercialization of the PEM fuel cells is challenging due to the high cost of its components. In addition to high catalyst costs, the problem of poor water management is also a vital issue that needs to be overcome. While the gas diffusion layer of a fuel cell is essential for removing the by-product water, the Nafion solution contained in the catalyst layer has hydrophobic properties and is crucial for both preventing the water accumulation and increasing the effectiveness of the fuel cell. In this study, the effects of Carbon:Nafion ratio on the reduction potential was investigated. The cyclic voltammograms (CV) was produced for each ratio, and it was shown that the CVs exhibit characteristics of hydrogen adsorption/desorption peaks. All the linear sweep voltammogram (LSV) curves revealed well distinguished regions of kinetic, mixed and diffusion limited reaction rate. As a result, it was observed that the ratio of 1:5 resulted higher reduction potential compared to 1:3 and 1:7. Finally, a mathematical model was purposed, in which related the rotation rate and platinum coating with the current density, in order to gain insight about the responses of the fuel cell system. The constructed model is tested and validated experimentally for various parameters that are present in the system, and it may be utilized to determine oxygen reaction activities of the catalysts without performing any unnecessary electrochemical tests.  相似文献   

6.
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.  相似文献   

7.
It has been reported recently that water flooding in the cathode gas channel has significant effects on the characteristics of a proton exchange membrane fuel cell. A better understanding of this phenomenon with the aid of an accurate model is necessary for improving the water management and performance of fuel cell. However, this phenomenon is often not considered in the previous one-dimensional models where zero or a constant liquid water saturation level is assumed at the interface between gas diffusion layer and gas channel. In view of this, a one-dimensional fuel cell model that includes the effects of two-phase flow in the gas channel is proposed. The liquid water saturation along the cathode gas channel is estimated by adopting Darcy’s law to describe the convective flow of liquid water under various inlet conditions, i.e. air pressure, relative humidity and air stoichiometry. The averaged capillary pressure of gas channel calculated from the liquid water saturation is used as the boundary value at the interface to couple the cathode gas channel model to the membrane electrode assembly model. Through the coupling of the two modeling domains, the water distribution inside the membrane electrode assembly is associated with the inlet conditions. The simulation results, which are verified against experimental data and simulation results from a published computational fluid dynamics model, indicate that the effects of relative humidity and stoichiometry of inlet air are crucial to the overall fuel cell performance. The proposed model gives a more accurate treatment of the water transport in the cathode region, which enables an improved water management through an understanding of the effects of inlet conditions on the fuel cell performance.  相似文献   

8.
A dynamic two-phase model of a proton exchange membrane fuel cell with respect to the gas diffusion layer (GDL) is presented and compared with chronoamperometric experiments. Very good agreement between experiment and simulation is achieved for potential step voltammetry (PSV) and sine wave testing (SWT). Homogenized two-phase models can be categorized in unsaturated flow theory (UFT) and multiphase mixture (M2) models. Both model approaches use the continuum hypothesis as fundamental assumption. Cyclic voltammetry experiments show that there is a deterministic and a stochastic liquid transport mode depending on the fraction of hydrophilic pores of the GDL. ESEM imaging is used to investigate the morphology of the liquid water accumulation in the pores of two different media (unteflonated Toray-TGP-H-090 and hydrophobic Freudenberg H2315 I3). The morphology of the liquid water accumulation are related with the cell behavior. The results show that UFT and M2 two-phase models are a valid approach for diffusion media with large fraction of hydrophilic pores such as unteflonated Toray-TGP-H paper. However, the use of the homgenized UFT and M2 models appears to be invalid for GDLs with large fraction of hydrophobic pores that corresponds to a high average contact angle of the GDL.  相似文献   

9.
Micro porous layer (MPL) is a carbon layer (~15 μm) that coated on the gas diffusion layer (GDL) to enhance the electrical conduction and membrane hydration of proton exchange membrane fuel cell (PEMFC). However, the liquid transport behavior from MPL to GDL and its impact on water management remain unclear. Thus, a three-dimensional volume of fluid (VOF) model is developed to investigate the effects of MPL crack properties on liquid water saturation, liquid pathway formation, and the two-phase mass transport mechanism in GDL. Firstly, a stochastic orientation method is used to reconstruct the fibrous structure of the GDL. After that, the liquid water saturation calculated from the numerical results agrees well with the experimental data. With considering the full morphology of the overlap between MPL and GDL, it's found that this overlap determines the preferred liquid emerging port of both MPL and GDL. Three crack design shapes in MPL are proposed on the base of the similarity crack formation processes of soil mud. In addition, the effects of crack shape, distance between cracks, and crack number on liquid water transport from MPL to GDL are investigated. It is found that the liquid water saturation of GDL increases with crack number and the distance between cracks, while presents little correlation to the crack shape. Hopefully, these results can help the development of PEMFC models without reconstructing full MPL morphology.  相似文献   

10.
A mathematical model was developed to investigate the cathode catalyst layer (CL) performance of a proton exchange membrane fuel cell (PEMFC). A numerous parameters influencing the cathode CL performance are implemented into the CL agglomerate model, namely, saturation and eight structural parameters, i.e., ionomer film thickness covering the agglomerate, agglomerate radius, platinum and carbon loading, membrane content, gas diffusion layer penetration content and CL thickness. For the first time, an artificial neural network (ANN) approach along with statistical methods were employed for modeling, prediction, and analysis of the CL performance, which is denoted by activation overpotential. The ANN was constructed to build the relationship between the named parameters and activation overpotential. Statistical analysis, namely, analysis of means (ANOM) and analysis of variance (ANOVA) were done on the data obtained by the trained neural network and resulted in the sensitivity factors of structural parameters and their mutual combinations as well as the best performance.  相似文献   

11.
We focus on the effect of cathode catalyst layer physical structure on the cell performance of proton exchange membrane fuel cell (PEMFC). At low polarization, high inlet humidification predicts better cell performance because of the more active surface in the CL. As polarization is extended near the mass transfer limited regime, high humidification only renders a flooded electrode and inferior cell performance. Catalyst layer with better capillary water transport parameters performs better than that with inferior water repulsion capability. Permeation in the gas diffusion layer (GDL) is important for efficient oxygen diffusion in mass transfer influenced regime. On the other hand, the permeability in catalyst layer only has secondary effect.The distribution of material properties in the CL is studied for the MEA fabrication strategy. The CL is divided into three sub-layers with changing material properties. With water effect considered, better performance is obtained for higher porosity near the GDL, higher electrolyte fraction in the agglomerate near the membrane. The effect of agglomerate particle size differs in the ohmic and mass transfer controlled regimes. Larger agglomerate size near GDL is preferred in the ohmic limited regime, while smaller size near GDL performs better if operated at mass transfer controlled regime.  相似文献   

12.
A unified two-phase flow mixture model has been developed to describe the flow and transport in the cathode for PEM fuel cells. The boundary condition at the gas diffuser/catalyst layer interface couples the flow, transport, electrical potential and current density in the anode, cathode catalyst layer and membrane. Fuel cell performance predicted by this model is compared with experimental results and reasonable agreements are achieved. Typical two-phase flow distributions in the cathode gas diffuser and gas channel are presented. The main parameters influencing water transport across the membrane are also discussed. By studying the influences of water and thermal management on two-phase flow, it is found that two-phase flow characteristics in the cathode depend on the current density, operating temperature, and cathode and anode humidification temperatures.  相似文献   

13.
A two-dimensional, steady state, isothermal agglomerate model for cathode catalyst layer design is presented. The design parameters, platinum loading, platinum mass ratio, electrolyte volume fraction, thickness of catalyst layer and agglomerate radius, are optimised by a multiple surrogate model and their sensitivities are analysed by a Monte Carlo method based approach. Two optimisation strategies, maximising the current density at a fix cell voltage and during a specific range, are implemented for the optima prediction. The results show that the optimal catalyst composition depends on operating cell voltages. At high current densities, the performance is improved by reducing electrolyte volume fraction to 7.0% and increasing catalyst layer porosity to 52.9%. At low current densities, performance is improved by increasing electrolyte volume fraction to 50.0% and decreasing catalyst layer porosity to 12.0%. High platinum loading and small agglomerate radius improve current density at all cell voltages. The improvement in fuel cell performance is analysed in terms of the electrolyte coating thickness, agglomerate specific area, conductivity, overpotential, volumetric current density and oxygen mole fraction within the cathode catalyst layer. The optimisation results are also validated by the agglomerate model at different cell voltages to confirm the effectiveness of the proposed methodologies.  相似文献   

14.
A three-dimensional transient two-phase isothermal model has been developed for the cathode side of a proton exchange membrane fuel cell (PEMFC). This has been done in order to fully investigate the effects and the time variation of liquid water formation as well as the gas phase transport under the start up condition. It is considered that the generated water in the cathode catalyst layer (CL) is liquid water and that the gas diffusion layer (GDL) is hydrophobic. A non-equilibrium water condensation-evaporation is also assumed. The time variations of liquid water distribution in along-channel and through-plane directions are investigated. This is to determine the liquid water accumulation at the start up time (above the channel under the CL), then the movement of the liquid water in the domain and the final accumulation at the steady state condition (above the rib and near the CL). It has also been found that it takes less time for a high average current density to attain the steady state condition which is due to the capillary pressure gradient inside the porous media. Validation of the numerical results has been implemented via a polarization curve comparison with the experimental data. Both sets show good agreement.  相似文献   

15.
A non-isothermal, steady-state, three-dimensional (3D), two-phase, multicomponent transport model is developed for proton exchange membrane (PEM) fuel cell with parallel gas distributors. A key feature of this work is that a detailed membrane model is developed for the liquid water transport with a two-mode water transfer condition, accounting for the non-equilibrium humidification of membrane with the replacement of an equilibrium assumption. Another key feature is that water transport processes inside electrodes are coupled and the balance of water flux is insured between anode and cathode during the modeling. The model is validated by the comparison of predicted cell polarization curve with experimental data. The simulation is performed for water vapor concentration field of reactant gases, water content distribution in the membrane, liquid water velocity field and liquid water saturation distribution inside the cathode. The net water flux and net water transport coefficient values are obtained at different current densities in this work, which are seldom discussed in other modeling works. The temperature distribution inside the cell is also simulated by this model.  相似文献   

16.
In proton exchange membrane fuel cell (PEMFC), a hydrophobic micro-porous layer (MPL) is usually placed between catalyst layer (CL) and gas diffusion layer (GDL) to reduce flooding. Recent experimental studies have demonstrated that liquid water saturation in GDL is drastically decreased in the presence of MPL. However, theoretical studies based on traditional continuum two-phase flow models suggest that MPL has no effect on liquid water distribution in GDL. In the present study, a pore network model with invasion percolation algorithm is developed and used to investigate the impacts of the presence of MPL on liquid water distribution in GDL from the viewpoint at the pore level. A uniform pressure and uniform flux boundary conditions are considered for liquid water entering the porous layer in PEMFC. The simulation results reveal that liquid water saturation in GDL is reduced in the presence of MPL, but the reduction depends on the condition of liquid water entering the porous layer in PEMFC.  相似文献   

17.
A generic, transient fuel cell ohmic loss mathematical model was developed for the case of contaminants that ion exchange with ionomer protons. The model was derived using step changes in contaminant concentration, constant operating conditions and foreign cation transport via liquid water droplets. In addition, the effect of ionomer cations redistribution within the ionomer on thermodynamic, kinetic and mass transport losses and migration were neglected. Thus, a simpler, ideal, ohmic loss case is defined and is applicable to uncharged contaminant species and gas phase contaminants. The closed form solutions were validated using contamination data from a membrane exposed to NH3. The model needs to be validated against contamination and recovery data sets including an NH4+ contaminated membrane exposed to a water stream. A method is proposed to determine model parameters and relies on the prior knowledge of the initial ionomer resistivity. The model expands the number of previously derived cases. Most models in this inventory, derived with the assumption that the reactant is absent, lead to different dimensionless current vs. time behaviors similar to a fingerprint. These model characteristics facilitate contaminant mechanism identification. Separation between membrane and catalyst (electroinactive contaminant) contamination is conceivably possible using additional indicative cell resistance measurements. Contamination is predicted to be significantly more severe under low relative humidity conditions.  相似文献   

18.
A three-dimensional, multi-component, single-phase model is applied for analyzing the electrochemical performance of the proton exchange membrane fuel cell (PEMFC) with U-shaped channel using COMSOL Multiphysics software. To validate the numerical model, the results are compared with the experimental data available in the literature. This work numerically investigates the effects of convection and diffusion under the rib, membrane thickness, ionomer content, and current density distribution at an interface between the gas diffusion layer and the catalyst layer. These effects were not studied for a U-shaped single serpentine channel despite having several benefits such as uniform reactant distribution through convection and diffusion under the rib and the resulting uniform current generation. A total of three membranes with 2, 3.5, and 5 mil thicknesses are analyzed, and an improvement of 17% in PEMFC performance with 2 mil thickness is observed owing to a decrease in internal resistance compared to 3.5 and 5 mil. Furthermore, an ionomer volume fraction in the catalyst layer is varied from 0.3 to 0.6, and the performance enhancement of 7% is reported at 0.5 volume fraction.  相似文献   

19.
Phosphoric acid-doped polybenzimidazole is used as a fuel cell membrane and an ionomer in the catalyst layer of a high-temperature polymer electrolyte fuel cell. Single-cell tests are performed to find the optimum ionomer content in the cathode catalyst layer. To determine the effects of the ionomer in the catalyst layer, the potential loss in the cell is separated into activation, ohmic and concentration losses. Each of these losses is examined by means of impedance and morphological analyses. With the weight ratio of ionomer to Pt/C of 1:4 (20 wt.% ionomer in catalyst layer), the fuel cell shows the lowest ohmic resistance. The activation loss in the fuel cell is lowest when the ratio is 1:9 (10 wt.% ionomer in the catalyst layer). The cell performance is dependent on this ratio, and the best cell performance is obtained with a ratio of 1:4.  相似文献   

20.
In a previous study, a simple acid catalyzed reaction (esterification) was found to predict excellently conductivity of a membrane contaminated with NH4+ or Na+. Since measurement of the conductivity of Nafion in a catalyst layer is problematic, being able to predict this conductivity for various formulations and fuel cell conditions would be advantageous. In this study, the same methodology as before was used to examine the proton availabilities of supported Nafion (Nafion on carbon and on Pt/C), as exists in the catalyst layer used in a PEMFC, during impurity exposure (e.g., NH3) as a means for prediction of its conductivity. It was found that the effect of NH3 exposure on the proton composition (yH+) of supported Nafion was similar to that of N-211 under the same conditions. Determined values of yH+ were then used to estimate the effective conductivity of an ammonium-poisoned cathode layer using the correlation developed and the agglomerate model. The predicted conductivities were matched with the results available in the literature. This technique would be useful for the optimization of catalyst design and for fuel cell simulation, since it provides many benefits over conventional performance test procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号