首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ag promoted ZnO/Al2O3 catalysts were prepared by using the incipient wetness impregnation method. The catalytic properties of steam reforming reaction for hydrogen production on the prepared catalysts were evaluated with H2O:C2H5OH molar ratios of 3:1 at 450 °C and atmospheric pressure. Ag promoted ZnO/Al2O3 catalysts show higher SRE catalytic activity than ZnO/Al2O3 catalysts. H2 and CH3CHO are the major products on Ag promoted catalysts, and C2H4 is also produced probably due to acid sites on Al2O3. SRE mechanism on Ag promoted ZnO/Al2O3 catalysts, which contains C-C scission, is different from that on ZnO/Al2O3 catalysts. A method based on thermogravimetry (TG), differential scanning calorimetry (DSC) and mass spectrometry (MS) was used to analysis the coking behavior on catalyst surface. The surfaces of Ag promoted ZnO/Al2O3 catalysts show two different types of coking, and suffer higher coke deposition during the steam reforming reaction.  相似文献   

2.
A comparative study of Schottky diode hydrogen gas sensors based on Pd/WO3/Si and Pd/WO3/ZnO/Si structure is presented in this work. Atomic force microscopy and X-ray photoelectron spectroscopy reveal that the WO3 sensing layer grown on ZnO has a rougher surface and better stoichiometric composition than the one grown on the Si substrate. Analysis of the IV characteristics and dynamic response of the two sensors when exposed to different hydrogen concentrations and various temperatures indicate that with the addition of the ZnO layer, the diode can exhibit a larger voltage shift of 4.0 V, 10 times higher sensitivity, and shorter response and recovery times (105 s and 25 s, respectively) towards 10,000-ppm H2/air at 423 K. Study on the energy band diagram of the diode suggests that the barrier height is modulated by the WO3/ZnO heterojunction, which could be verified by the symmetrical sensing properties of the Pd/WO3/ZnO/Si gas sensor with respect to applied voltage.  相似文献   

3.
The composition (CuO/ZnO/Al2O3 = 30/60/10) of a commercial catalyst G66B was used as a reference for designing CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts for the oxidative (or combined) steam reforming of methanol (OSRM). The effects of Al2O3, CeO2 and ZrO2 on the OSRM reaction were clearly identified. CeO2, ZrO2 and Al2O3 all promoted the dispersions of CuO and ZnO in CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Aluminum oxide lowered the reducibility of the catalyst, and weakened the OSRM reaction. Cerium oxide increased the reducibility of the catalyst, but weakened the reaction. Zirconium oxide improved the reducibility of the catalyst, and promoted the reaction. A lower CuO/ZnO ratio of the catalyst was associated with greater promotion of ZrO2. The critical CuO/ZnO ratio for the promotion of ZrO2 was approximately 0.75–0.8. Introducing of ZrO2 into CuO/ZnO/Al2O3 also improved the stability of the catalyst. Although Al2O3 inhibited the OSRM reaction, a certain amount of it was required to ensure the stability and the mechanical strength of the catalysts.  相似文献   

4.
Both kinetics and thermodynamics properties of MgH2 are significantly improved by the addition of Mg(AlH4)2. The as-prepared MgH2–Mg(AlH4)2 composite displays superior hydrogen desorption performances, which starts to desorb hydrogen at 90 °C, and a total amount of 7.76 wt% hydrogen is released during its decomposition. The enthalpy of MgH2-relevant desorption is 32.3 kJ mol−1 H2 in the MgH2–Mg(AlH4)2 composite, obviously decreased than that of pure MgH2. The dehydriding mechanism of MgH2–Mg(AlH4)2 composite is systematically investigated by using x-ray diffraction and differential scanning calorimetry. Firstly, Mg(AlH4)2 decomposes and produces active Al. Subsequently, the in-situ formed Al reacts with MgH2 and forms Mg–Al alloys. For its reversibility, the products are fully re-hydrogenated into MgH2 and Al, under 3 MPa H2 pressure at 300 °C for 5 h.  相似文献   

5.
The photocatalytic hydrogen production from aqueous methanol solution was investigated with ZnO/TiO2, SnO/TiO2, CuO/TiO2, Al2O3/TiO2 and CuO/Al2O3/TiO2 nanocomposites. A mechanical mixing method, followed by the solid-state reaction at elevated temperature, was used for the preparation of nanocomposite photocatalyst. Among these nanocomposite photocatalysts, the maximal photocatalytic hydrogen production was observed with CuO/Al2O3/TiO2 nanocomposites. A variety of components of CuO/Al2O3/TiO2 photocatalysts were tested for the enhancement of H2 formation. The optimal component was 0.2 wt% CuO/0.3 wt% Al2O3/TiO2. The activity exhibited approximately tenfold enhancement at the optimum loading, compared with that with pure P-25 TiO2. Nano-sized TiO2 photocatalytic hydrogen technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy.  相似文献   

6.
A highly selective hydrogen (H2) sensor has been successfully developed by using an yttria-stabilized zirconia (YSZ)-based mixed-potential-type sensor utilizing SnO2 (+30 wt.% YSZ) sensing electrode (SE) with an intermediate Al2O3 barrier layer which was coated with a catalyst layer of Cr2O3. The sensor utilizing SnO2 (+30 wt.% YSZ)-SE was found to be capable of detecting H2 and propene (C3H6) sensitively at 550 °C. In order to enhance the selectivity towards H2, a selective C3H6 oxidation catalyst was employed to minimize unwanted responses caused by interfering gases. Among the examined metal oxides, Cr2O3 facilitated the selective oxidation of C3H6. However, the addition or lamination of Cr2O3 to SnO2 (+30 wt.% YSZ)-SE was found to diminish the sensing responses to all examined gases. Therefore, an intermediate layer of Al2O3 was sandwiched between the SE layer and the catalyst layer to prevent the penetration of Cr2O3 particles into the SE layer. The sensor using SnO2 (+30 wt.% YSZ)-SE coated with a catalyst layer of Cr2O3 as well as an intermediate layer of Al2O3 exhibited a sensitive response toward H2, with only minor responses toward other examined gases at 550 °C under humid conditions (21 vol.% O2 and 1.35 vol.% H2O in N2 balance). A linear relationship was observed between sensitivity and H2 concentration in the range of 20–800 ppm on a logarithmic scale. The results of sensing performance evaluation and polarization curve measurements indicate that the sensing mechanism is based on the mixed-potential model.  相似文献   

7.
Solar syngas production from CO2 and H2O is considered in a two-step thermochemical cycle via Zn/ZnO redox reactions, encompassing: 1) the ZnO thermolysis to Zn and O2 using concentrated solar radiation as the source of process heat, and 2) Zn reacting with mixtures of H2O and CO2 yielding high-quality syngas (mainly H2 and CO) and ZnO; the ZnO is recycled to the first, solar step, resulting in net reaction βCO2 + (1 − β)H2O → βCO + (1 − β)H2. Syngas is further processed to liquid hydrocarbon fuels via Fischer-Tropsch or other catalytic processes. Second-law thermodynamic analysis is applied to determine the cycle efficiencies attainable with and without heat recuperation for varying molar fractions of CO2:H2O and solar reactor temperatures in the range 1900-2300 K. Considered is the energy penalty of using Ar dilution in the solar step below 2235 K for shifting the equilibrium to favor Zn production.  相似文献   

8.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

9.
This paper presents results of thermodynamic analysis and experimental evaluation of hydrogen production by steam reforming of ethanol (SRE) combined with CO2 absorption using a mixture of a solid absorbent (CaO, CaO*MgO and Na2ZrO3) and a Ni/Al2O3 catalyst. Thermodynamic analysis results indicate that a maximum of 69.5% H2 (dry basis) is feasible at 1 atm, H2O/C2H5OH = 6 (molar ratio) and T = 600 °C. whereas, the addition of a CO2 absorbent at 1 atm, T = 600 °C and H2O/C2H5OH/Absorbent = 6:1:2.5, produced a H2 concentration of 96.6, 94.1, and 92.2% using CaO, CaO*MgO, and Na2ZrO3, respectively. SRE experimental evaluation achieved a maximum of 60% H2. While combining SRE and a CO2 absorbent exhibited a concentration of 96, 94, and 90% employing CaO, CaO*MgO, and Na2ZrO3, respectively at 1 atm, T = 600 °C, SV = 414 h−1 and H2O/C2H5OH/absorbent = 6:1:2.5 (molar ratio).  相似文献   

10.
Unloaded and 0.25–1.0 wt% Pt-loaded WO3 nanoparticles were synthesized by hydrothermal method using sodium tungstate dihydrate and sodium chloride as precursors in an acidic condition and impregnated using platinum acetylacetonate. Pt-loaded WO3 films on an Al2O3 substrate with interdigitated Au electrodes were prepared by spin-coating technique. The response of WO3 sensors with different Pt-loading concentrations was tested towards 0.01–1.0 vol% of H2 in air as a function of operating temperature (200–350 °C). The 1.0 wt% Pt-loaded WO3 sensing film showed the highest response of ∼2.16 × 104 to 1.0 vol% H2 at 250 °C. Therefore, an operating temperature of 250 °C was optimal for H2 detection. The responses of 1.0 wt% Pt-loaded WO3 sensing film to other flammable gases, including C2H5OH, C2H4 and CO, were considerably less, demonstrating Pt-loaded WO3 sensing film to be highly selective to H2.  相似文献   

11.
Thin films of (Sb2Te3)70 (Bi2Te3)30 were prepared by thermal evaporation. The composition of the film was confirmed by energy dispersive analysis (EDAX). X-ray diffraction studies showed that the film was polycrystalline with grain size of 4.39 Å and with a preferred orientation in the (0 1 5) directions. Al/((Sb2Te3)70 (Bi2Te3)30)/Al (MSM) thin film capacitors are formed and its AC and dielectric studies were carried out using a digital LCR metre at various frequencies (12 Hz–100 kHz) and temperatures (303–483 K). The dielectric constant for a film of thickness 3000 Å was found to be 86 for 1 kHz at room temperature. The temperature coefficient of capacitance (TCC) and temperature coefficient of permittivity (TCP) were estimated as 684 and 1409 ppm/K for 10 kHz at 303 K, respectively. The activation energy was estimated as 1.190 eV for frequency of 100 kHz at 303 K. The AC conductivity of the films was found to be a hopping mechanism.  相似文献   

12.
Mesoporous ZrO2-modified coupled ZnO/TiO2 nanocomposites were prepared by a surfactant assisted sol–gel method. The photocatalytic performance of these materials was investigated for H2 evolution without noble metal co-catalyst using aqueous methanol media under AM1.5 simulated light. The H2 evolution was compared with coupled ZnO/TiO2, TiO2, ZnO and Degussa P25. The ZrO2-modified nanocomposites exhibited higher H2 generation, specifically 0.5 wt.% ZrO2 loading produced 30.78 mmol H2 g−1 compared to 3.55 mmol H2 g−1 obtained with coupled ZnO/TiO2. A multiple absorbance thresholds at 435 nm and 417 nm were observed with 0.5 wt.% ZrO2 loading, corresponding to 2.85 eV and 2.97 eV band gap energies. The high surface area, large pore volume, uniform crystallite sizes and enhanced light harvesting observed in ZrO2-modified nanocomposites were contributing factors for effective charge separation and higher H2 production. The possible mechanism of H2 generation from aqueous methanol solution over ZrO2-modified nanocomposite is presented.  相似文献   

13.
MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface.  相似文献   

14.
The effect of the growth temperature and Mg/(Mg+Zn) molar flow rate ratio of metal organic sources on the crystalline structure of Zn1−xMgxO (ZMO) films is investigated in thin films prepared by metal organic chemical vapor deposition (MOCVD) process on fused silica in order to obtain the wide-bandgap ZMO films with single wurtzite structure, which is very important to achieve high-efficiency chalcopyrite solar cells. Based on the measurements and analysis of the fabricated samples, the ZMO films with the controllable bandgap from 3.3 to 3.72 eV can exhibit a single wurtzite phase depending on the growth temperature and Mg content. Furthermore, the resistivity of ZMO films is comparable to that of ZnO film. It is a good indication that ZMO film is superior to CdS or ZnO films as buffer and window layers mainly due to its controllable bandgap energy and safety. As a result, the solar cells with ZMO buffer were fabricated without any surface treatment of Cu(InGa)(SSe)2 (CIGSSe) absorber or antireflection coating, and the efficiency of 10.24% was obtained.  相似文献   

15.
In this experimental study, a membrane reactor housing a composite membrane constituted by a thin Pd-layer supported onto Al2O3 is utilized to perform methanol steam reforming reaction to produce high-grade hydrogen for PEM fuel cell applications. The influence of various parameters such as temperature, from 280 to 330 °C, and pressure, from 1.5 to 2.5 bar, is analyzed. A commercial Cu/Zn-based catalyst is packed in the annulus of the membrane reactor and the experimental tests are performed at space velocity equal to 18,500 h−1 and H2O:CH3OH feed molar ratio equal to 2.5:1. Results in terms of methanol conversion, hydrogen recovery, hydrogen yield and products selectivities are given. As a best result of this work, 85% of methanol conversion and a highly pure hydrogen stream permeated through the membrane with a CO content lower than 10 ppm were reached at 330 °C and 2.5 bar. Furthermore, a comparison between the experimental results obtained in this work and literature data is proposed and discussed.  相似文献   

16.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

17.
Steam reforming of methanol was investigated over Cu–ZnO–ZrO2–Al2O3 catalysts at 473 and 573 K. The Cu:Zn:(Al + Zr) molar ratio was 3:3:4; however, the Zr:Al molar ratio was varied and the catalysts were pretreated at different calcination and reduction temperatures. The synthesized catalysts were characterized by N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), X-ray diffraction, oxidized surface TPR, and infrared spectroscopy after carbon monoxide chemisorption. The crystalline size of Cu decreased on increasing the calcination temperatures from 573 to 623 K and increased on increasing the reduction temperatures from 523 to 573 K. Among the tested catalysts, the Cu–ZnO–ZrO2 catalyst exhibited the highest and lowest hydrogen-formation rates at 473 and 573 K, respectively. After the reaction at 573 K, all the tested catalysts exhibited an increase in the Cu crystalline size, causing the catalyst deactivation. Among the tested catalysts, the Cu–ZnO–ZrO2–Al2O3 catalyst, where the Cu:Zn:Al:Zr molar ratio was 3:3:2:2, showed the highest and most stable catalytic activity at 573 K. Cu dispersion and catalyst composition affected the catalytic performance for steam reforming of methanol.  相似文献   

18.
The mechanism of hydrogen (H2) gas sensing in the range of 200–1000 ppm of RF-sputtered ZnO films was studied. The I–V characteristics as a function of operating temperature proved the ohmic behaviour of the contacts to the sensor. The complex impedance spectrum (IS) of the ZnO films showed a single semicircle with shrinkage in the diameter as the temperature increased. The best fitting of these data proved that the device structure can be modelled as a single resistance-capacitance equivalent circuit. It was suggested that the conductivity mechanism in the ZnO sensor is controlled by surface reaction. The impedance spectrum also exhibited a decreased in semicircle radius as the hydrogen concentration was increased in the range from 200 ppm to 1000 ppm.  相似文献   

19.
In this work, differently from our previous work, MgH2 instead of Mg was used as a starting material. Ni, Ti, and LiBH4 with a high hydrogen-storage capacity of 18.4 wt% were added. A sample with a composition of MgH2–10Ni–2LiBH4–2Ti was prepared by reactive mechanical grinding. MgH2–10Ni–2LiBH4–2Ti after reactive mechanical grinding contained MgH2, Mg, Ni, TiH1.924, and MgO phases. The activation of MgH2–10Ni–2LiBH4–2Ti for hydriding and dehydriding reactions was not required. At the number of cycles, n = 2, MgH2–10Ni–2LiBH4–2Ti absorbed 4.09 wt% H for 5 min, 4.25 wt% H for 10 min, and 4.44 wt% H for 60 min at 573 K under 12 bar H2. At n = 1, MgH2–10Ni–2LiBH4–2Ti desorbed 0.13 wt% H for 10 min, 0.54 wt% H for 20 min, 1.07 wt% H for 30 min, and 1.97 wt% H for 60 min at 573 K under 1.0 bar H2. The PCT (Pressure–Composition–Temperature) curve at 593 K for MgH2–10Ni–2LiBH4–2Ti showed that its hydrogen-storage capacity was 5.10 wt%. The inverse dependence of the hydriding rate on temperature is partly due to a decrease in the pressure differential between the applied hydrogen pressure and the equilibrium plateau pressure with the increase in temperature. The rate-controlling step for the dehydriding reaction of the MgH2–10Ni–2LiBH4–2Ti at n = 1 was analyzed.  相似文献   

20.
Cu/ZnO/Al2O3 adsorbents for removal of odorant sulfur compounds were prepared with various Al/Cu molar ratios by co-precipitation method. The sulfur removing ability as a function of Al/Cu molar ratio of the adsorbents for t-butyl mercaptan (TBM), tetrahydro thiophene (THT), dimethyl disulfide (DMS) and H2S were investigated at 250 °C and 6000 h−1 space velocity. Based on the results of adsorption capacity and characterization by various techniques, the optimum Al/Cu ratio for maximum sulfur removal capacity is found to be at Al/Cu molar ratio of 0.15 which possesses the well-dispersed Cu species with high reducibility. The adsorption capacity is highest for H2S followed by TBM, DMS and THT. The main role of Al2O3 component is to provide the dispersion of CuO species homogeneously with small particle formation and high reducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号