首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
In order to optimize operations of microbial electrolysis cell (MEC) for hydrogen production, microbial anode potential (MAP) was analyzed as a function of factors in biofilm anode system, including pH, substrate and applied voltage. The results in “H” shape reactor showed that MAP reflected the information when any factor became limiting for hydrogen production. Commonly, hydrogen generation started around anode potential of −250 mV to −300 mV. While, higher current density and higher hydrogen rate were obtained when MAP went down to −400 mV or even lower in this study. Biofilm anode could work normally between pH 6.5 and 7.0, while the lowest anode potential appeared around 6.8–7.0. However, when pH was lower 6.0 or substrate concentration was less than 50 mg L−1 in anode chamber, MAP went up to −300 mV or above, leading to hydrogen reduction. Applied voltage did not affect MAP much during the process of hydrogen production. Anode potential analysis also showed that planktonic bacteria in suspended solution presented positive effects on biofilm anode system and they contributed to enhance electron transfer by reducing internal resistance and lowering minimum voltage needed for hydrogen production to some extent.  相似文献   

2.
The key process parameters of solid state enzymolysis for the generation of soluble sugar (SS) and bio-hydrogen production from corn stalk were optimized by the response surface methodology (RSM) based on a three factor-five level central composite design (CCD), respectively. The result showed that the optimal solid state enzymolysis condition from corn stalk was 47.7 °C, SCED of 0.054 g/g and 10.3 days for the maximum SS yield of 526 mg/g-TVS. Correspondingly, the optimal enzymolysis conditions from corn stalk appeared at 46.3 °C, SCED of 0.049 g/g and 7.5 days for the maximum hydrogen yield of 205.5 mL/g-TVS from the hydrolyzed substrate by the next dark fermentation. In addition, the bio-hydrogen production mechanism from corn stalk was preliminary investigated by XRD and SEM analyses. The results suggested that the solid state enzymolysis of substrate played a vital role in the effective conversion of corn stalk into bio-hydrogen by dark fermentation.  相似文献   

3.
Platinum has excellent catalytic capabilities and is commonly used as cathode catalyst in microbial electrolysis cells (MECs). Its high cost, however, limits the practical applications of MECs. In this study, precious-metal-free cathodes were developed by electrodepositing NiMo and NiW on a carbon-fiber-weaved cloth material and evaluated in electrochemical cells and tubular MECs with cloth electrode assemblies (CEA). While similar performances were observed in electrochemical cells, NiMo cathode exhibited better performances than NiW cathode in MECs. At an applied voltage of 0.6 V, the MECs with NiMo cathode accomplished a hydrogen production rate of 2.0 m3/day/m3 at current density of 270 A/m3 (12 A/m2), which was 33% higher than that of the NiW MECs and slightly lower than that of the MECs with Pt catalyst (2.3 m3/day/m3). At an applied voltage of 0.4 V, the energy efficiencies based on the electrical energy input reached 240% for the NiMo MECs. These results demonstrated the great potential of using carbon cloth with Ni-alloy catalysts as a cathode material for MECs. The enhanced MEC performances also demonstrate the scale-up potential of the CEA structure, which can significantly reduce the electrode spacing and lower the internal resistance of MECs, thus increasing the hydrogen production rate.  相似文献   

4.
High purity H2 production using microbial electrolysis cells (MECs) is often limited by methanogenesis. Here methanogenesis was effectively controlled by electrolytic oxygen production. Oxygen production was induced intermittently using two stainless steel electrodes, which were used as the MEC cathode during Normal operation. It was found that oxygen should be produced every 12 h or more frequently because of rapid hydrogenotrophic methanogen growth with available pure H2. This method was also effective in an initially methanogen-dominated MEC. However, the growth of aerobic biofilms in MECs weakened methanogen control. Residual oxygen after fed-batch cycles was found to be the key indicator for effective methane control. Methane content was consistently smaller than 10% at the threshold residual oxygen volume (3 mL) or greater. MEC operation at such threshold conditions will allow high purity H2 production, low energy consumption for O2 production and minimal O2 exposure on bioanodes, enabling sustainable wastewater treatment and energy recovery using MECs.  相似文献   

5.
The aim of this work is to evaluate biohydrogen production from agro-industrial wastewaters and by-products, by combining dark fermentation and microbial electrolysis in a two-step cascade process. Such coupling of both technologies constitutes a technological building block within a concept of environmental biorefinery where sustainable production of renewable energy is expected.Six different wastewaters and industrial by-products coming from cheese, fruit juice, paper, sugar, fruit processing and spirits factories were evaluated for the feasibility of hydrogen production in a two-step process. The overall hydrogen production when coupling dark fermentation and microbial electrolysis was increased up to 13 times when compared to fermentation alone, achieving a maximum overall hydrogen yield of 1608.6 ± 266.2 mLH2/gCODconsumed and a maximum of 78.5 ± 5.7% of COD removal.These results show that dark fermentation coupled with microbial electrolysis is a highly promising option to maximize the conversion of agro-industrial wastewaters and by-products into bio-hydrogen.  相似文献   

6.
An affordable cathode material for microbial electrolysis cells (MECs) was synthesized via surface-modification of stainless steel mesh (SSM) by anodization. The anodization parameters, such as wire mesh size, temperature, applied voltage, operating time, were optimized. The surface-modified SSM (smSSM) exhibited porous surface and higher specific surface area. The as synthesized smSSMs were utilized as freestanding cathodes in a conventional microbial electrolysis cell (MEC) and a simultaneous dark fermentation and MEC process (sDFMEC). The H2 production in MEC and sDFMEC with smSSM as cathode was approximately 150% higher than that with SSM. The performance of smSSM was 67–75% of that of Pt/C. The sDFMEC with smSSM as cathode was stable for 12 cycles of fed-batch operation in 60 days. Overall, energy conversion from S. japonica by sDFMEC was as high as 23.4%.  相似文献   

7.
With limited external applied voltage, the microbial electrolysis cell (MEC) could produce hydrogen by exoelectrogenic microorganisms. The present study revealed that a cubiod-shaped chamber effectively reduces the distance between electrodes and thereby reduces the internal resistance of the entire cell. With 0.6 V of applied voltage, the cuboid MEC had a columbic efficiency of 33.7%, much higher than that achieved in the H-shaped MEC test (ca. 15%) of comparable size. Filling the anode chamber with granular activated carbon further enhanced the columbic efficiency to 45%. The corresponding hydrogen conversion rate could reach 35%.  相似文献   

8.
Biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis was investigated under thermophilic condition. The optimum chemical oxygen demand (COD) concentration and pH for dark fermentation were 66 g·L−1 and 6.5 with a hydrogen yield of 73 mL-H2·gCOD−1. The dark fermentation effluent consisted of mainly acetate and butyrate. The optimum voltage for microbial electrolysis was 0.7 V with a hydrogen yield of 163 mL-H2·gCOD−1. The hydrogen yield of continuous two-stage dark fermentation and microbial electrolysis was 236 mL-H2·gCOD−1 with a hydrogen production rate of 7.81 L·L−1·d−1. The hydrogen yield was 3 times increased when compared with dark fermentation alone. Thermoanaerobacterium sp. was dominated in the dark fermentation stage while Geobacter sp. and Desulfovibrio sp. dominated in the microbial electrolysis cell stage. Two-stage dark fermentation and microbial electrolysis under thermophilic condition is a highly promising option to maximize the conversion of palm oil mill effluent into biohydrogen.  相似文献   

9.
A novel reaction mechanism of H2 and CH4 cogeneration from water hyacinth (Eichhornia crassipes) was originally proposed to increase the energy conversion efficiency. The glucose and xylose hydrolysates derived from cellulose and hemicellulose are fermented to cogenerate H2 and CH4 by two-step anaerobic fermentation. The total volatile solid of hyacinth leaves can theoretically cogenerate H2 and CH4 yields of 303 ml-H2/g-TVS and 211 ml-CH4/g-TVS, which dramatically increases the theoretical energy conversion efficiency from 19.1% in only H2 production to 63.1%. When hyacinth leaves are pretreated with 3 wt% NaOH and cellulase in experiments, the cogeneration of H2 (51.7 ml-H2/g-TVS) and CH4 (143.4 ml-CH4/g-TVS) markedly increases the energy conversion efficiency from 3.3% in only H2 production to 33.2%. Hyacinth leaves, which have the most cellulose and hemicellulose and the least lignin and ash, give the highest H2 and CH4 yields, while hyacinth roots, which have the most ash and the least cellulose and hemicellulose, give the lowest H2 and CH4 yields.  相似文献   

10.
The effects of chemosynthetic and biological surfactants on accelerating hydrogen generation from waste activated sludge (WAS) is investigated in a short-cut fermentation-bioelectrochemical system. The specific experiments are conducted in a series of completely stirred tank reactors (CSTRs) and single-chamber microbial electrolysis cells (MECs). Results shows that rhamnolipid (RL) lead to a VFAs yield 1.16-fold and 3.63-fold higher over with sodium dodecylsulphate (SDS) and sodium dodecyl benzene sulfonate (SDBS) treatments in CSTRs on 72 h. By contrast, the corresponding conversion efficiency of methanogenesis is inhibited (0.18 ± 0.03% versus 1.89 ± 0.15% (SDS) and 6.63 ± 0.77% (SDBS)), which is beneficial for subsequent hydrogen production in MECs. The distribution of the acidogenesis metabolites is also affected by the types of surfactants, reflected on cascade changing of hydrogen production. Highest hydrogen yield is 12.90 mg H2 g?1 VSS in RL-MECs, which is larger than all values that have been reported for fermentation and single-chamber MECs. Current and electrochemical impedance spectroscopy clearly demonstrate the important role of RL treatment in electron/proton transfer and the internal resistance decrease. This study demonstrate the sustainability and attractiveness of WAS short-cut fermentation-elelctrohydrogenesis, providing a sound basis for sludge stabilization and bioenergy recovery.  相似文献   

11.
In this paper a new approach for H2 production by PEM electrolysis, assisted by effluent treatment in the anolyte is proposed. H2 is produced, in the catholyte, by proton reduction at a Fe-cathode, in an acid medium (1 M H2SO4). While in the anolyte, a mixture of Fe2+/Fe3+ is produced from the oxidation of an iron anode. The overall energy required (≤1.00 V) is less than that required by conventional water electrolysis, and is delivered by solar panels. In the anolyte, iron ions can be used in favor of a Fenton-type process, in the presence of H2O2. This approach is used in effluent treatment. The oxidation efficiency of dyes reactive black 5 (RB 5) and acid green 25 (AG 25) was investigated, in mild conditions, during H2 production. The main experimental results show that it is possible to oxidize 0.00024 M RB 5 or 0.0002 M AG 25 in the anolyte, in 20 min.  相似文献   

12.
Solid Oxide Electrolyzer Cells (SOECs) are promising energy devices for the production of syngas (H2/CO) by H2O and/or CO2 electrolysis. Here we developed a Cu–Ce0.9Gd0.1O2−δ/Ce0.8Gd0.2O2−δ/Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Ce0.8Gd0.2O2−δ cell and performed H2O and CO2 electrolysis experiments in the intermediate temperature range (600°C–700 °C). As a baseline, the cell was first tested in fuel cell operation mode; the sample shows a maximum power density peak of 104 mW cm−2 at 700 °C under pure hydrogen and air. H2O electrolysis testing revealed a steady production of hydrogen with a Faraday's efficiency of 32% at 700 °C at an imposed current density of −78 mA cm−2. CO production was observed during CO2 electrolysis but higher cell voltages were required. A lower efficiency of about 4% was obtained at 700 °C at an imposed current density of −660 mA cm−2. These results confirm that syngas production is feasible by water and carbon dioxide electrolysis but further improvements from both the manufacturing and the electrocatalytic aspects are needed to reach higher yields and efficiencies.  相似文献   

13.
In this paper, a photoelectrocatalytic (PEC) recovery of toxic H2S into H2 and S system was proposed using a novel bismuth oxyiodide (BiOI)/ tungsten trioxide (WO3) nano-flake arrays (NFA) photoanode. The BiOI/WO3 NFA with a vertically aligned nanostructure were uniformly prepared on the conductive substrate via transformation of tungstate following an impregnating hydroxylation of BiI3. Compared to pure WO3 NFA, the BiOI/WO3 NFA promotes a significant increase of photocurrent by 200%. Owing to the excellent stability and photoactivity of the BiOI/WO3 NFA photoanode and I/I 3 catalytic system, the PEC system toward splitting of H2S totally converted S2– into S without any polysulfide ( Sx n) under solar-light irradiation. Moreover, H2 was simultaneously generated at a rate of about 0.867 mL/(h·cm). The proposed PEC H2S splitting system provides an efficient and sustainable route to recover H2 and S.  相似文献   

14.
A phenazine-containing Ru(II) complex [Ru(bpy)2(tatp)]2+ (bpy = 2,2′-bipyridine and tatp = 1,4,8,9-tetra-aza-triphenylene) is first applied to a modification of the nano-TiO2/indium-tin oxide (ITO) electrode by the method of repetitive voltammetric sweeping. The resulting [Ru(bpy)2(tatp)]2+-modified TiO2 electrode shows two pairs of well-defined redox waves and excellent electrocatalytic activity for the oxidation of guanine. [Ru(bpy)2(tatp)]2+ on TiO2 surfaces exhibits intense absorbance and photoluminescence in visible region, revealed by absorption spectra, emission spectra and fluorescence microscope. While [Ru(bpy)2(tatp)]2+-sensitized TiO2 is functionalized as an anode to combine with a continuous wave green laser via an optical microscope, the luminescence of Ru(II)-based excited states can be enhanced by the oxidation of guanine. Furthermore, the [Ru(bpy)2(tatp)]2+-sensitized TiO2 electrode is used as photoanode and hemoglobin-modified single-walled carbon nanotubes (SWCNTs) as cathode for the elaboration of a photo-stimulated guanine/H2O2 fuel cell with a saturated KCl salt-bridge. It becomes evident that the photo-stimulated fuel cell performance depends strongly on the excited states of Ru(II) complex-sensitized anodes as well as the electrocatalytic oxidation of guanine. This study provides an electrochemically-tuned luminescence method for better evaluating contributions of the sensitizer excited states to photo-stimulated fuel cells.  相似文献   

15.
Microbial electrolysis cells (MECs) are a new bio-electrochemical method for converting organic matter to hydrogen gas (H2). Palm oil mill effluent (POME) is hazardous wastewater that is mostly formed during the crude oil extraction process in the palm oil industry. In the present study, POME was used in the MEC system for hydrogen generation as a feasible treatment technology. To enhance biohydrogen generation from POME in the MEC, an empirical model was generated using response surface methodology (RSM). A central composite design (CCD) was utilized to perform twenty experimental runs of MEC given three important variables, namely incubation temperature, initial pH, and influent dilution rate. Experimental results from CCD showed that an average value of 1.16 m3 H2/m3 d for maximum hydrogen production rate (HPR) was produced. A second-order polynomial model was adjusted to the experimental results from CCD. The regression model showed that the quadratic term of all variables tested had a highly significant effect (P < 0.01) on maximum HPR as a defined response. The analysis of the empirical model revealed that the optimal conditions for maximum HPR were incubation temperature, initial pH, and influent dilution rate of 30.23 °C, 6.63, and 50.71%, respectively. Generated regression model predicted a maximum HPR of 1.1659 m3 H2/m3 d could be generated under optimum conditions. Confirmation experimentation was conducted in the optimal conditions determined. Experimental results of the validation test showed that a maximum HPR of 1.1747 m3 H2/m3 d was produced.  相似文献   

16.
The goal of the study was to characterize H2 production in an integrated process utilizing potato homogenate (PH) for dark, fermentative H2 production followed by H2 photoproduction using purple non-sulfur bacteria. Emphasis was placed on (a) examining potato fermentation effluent (FE) as substrate for H2 photoproduction, (b) estimating the yield and efficiency of both processes, and (c) elucidating the physiological factors influencing the integrated system as a whole. In the dark stage maximal production of gas (11.5 L L−1 of the culture) and VFA (350 mM) were observed with a PH concentration of 400 g L−1 of medium, but higher yields (0.05 L g−1 PH; 1.9 mmol g−1 PH) were obtained at PH concentrations of 50–100 g L−1. H2 photoproduction by purple bacteria was inhibited at high FE content. Upon suitable dilution, adequate illumination, and supplementation with Fe/Mg/phosphate nutrients, H2 photoproduction reached 40 L L−1 of non-diluted FE, with a total H2 yield of 5.6 mol mol−1 glucose equivalent for the two-stage integrated process.  相似文献   

17.
The low cost, low over-potential loss, good catalytic properties for hydrogen evolution reaction (HER), high corrosion stability, commercially available, and could be applied in pH-neutral solution and ambient temperature are important properties for the cathode materials when it is applied in microbial electrolysis cell (MEC) technology. This study has two-pronged objectives: the first is to investigate the feasibility of titanium (Ti) and graphite felt (GF) coated with nickel (Ni), and the second is to generate hydrogen from the fermentation effluent (FE). The electrodeposition (ED) method was used to deposit Ni catalyst onto Ti (Ni/Ti) and GF (Ni/GF) surfaces. The scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy were used to characterize the cathode morphology and element composition. The catalytic properties of Ni/Ti and Ni/GF could be evaluated using the linear sweep voltammetry tests. The maximum volumetric H2 production rates of MEC using Ni/Ti and Ni/GF cathodes were obtained at 0.39 ± 0.01 and 0.33 ± 0.03 m3 H2 m−3 d−1 respectively. The Ni/Ti and Ni/GF cathodes could be used as alternative cathodes while producing hydrogen from FE.  相似文献   

18.
In order to enhance the visible light-driven photocatalytic H2 production activity of CdZnS, an ethylenediamine-assisted hydrothermal pathway was used to synthesize CdxZn1-xS(en) with different Cd/Zn molar ratios. It was found out that the prepared Cd0.5Zn0.5S(en) possessed the highest photocatalytic H2 production rate of 13539.0 μmol h?1 g?1 that was higher than that of CdZnS. The key to this achievement could be ascribed to the stacking faults formation, the optimum band gap with conduction band position and small crystallite size. Based on this, Cd0.5Zn0.5S(en) was modified by NiS for further improving the activity. The obtained Cd0.5Zn0.5S(en)NiS with NiS loading content of 0.25 wt% exhibited much higher photocatalytic H2 production rate, reaching up to 38187.7 μmol h?1 g?1 that were among the highest efficiencies for semiconductor photocatalysts ever reported. It was confirmed that the nanosized NiS anchored on Cd0.5Zn0.5S(en) interface, acting as electron trapping sites, attributed to the spatial suppressions of electron-hole recombination. Meanwhile, the NiS loaded on the surface optimized the photogenerated electron transfer pathway between the semiconductor materials that gives rise to significantly enhanced photocatalytic activity. This study would put forward a facile method for developing high photocatalytic activity and low-cost catalytic material for H2 production, which provide a new thought to address the global energy crisis and the environmental contamination.  相似文献   

19.
The monodispersed poly(2-vinyl pyridine) (p(2-VP)) and poly(2-vinyl pyridine-co-4-vinyl pyridine) (p(2-VP-co-4-VP)) particles of different compositions were synthesized by a surfactant-free emulsion polymerization system using divinyl benzene (DVB) as cross-linker. The diameter of p(2-VP) and p(2-VP-co-4-VP) particles were measured between 370 and 530 nm. Co, Ni and Cu metal nanoparticles were prepared inside these microgels after quaternization with HCl and loading of metal salts, such as CoCl2, NiCl2, and CuCl2, in ethyl alcohol followed by reduction with NaBH4. The prepared metal nanoparticles within these particles were used as catalyst for H2 production via hydrolysis of NaBH4 and NH3BH3. Various parameters of the polymeric microgels such as template, metal types, reuse, the amount of NaOH, and temperature were investigated. From hydrolysis reactions the activation energy (Ea), enthalpy (ΔH), and entropy (ΔS) were calculated for Co metal nanoparticles as catalyst for the NaBH4 hydrolysis reaction in the temperature range of 0–50 °C. The activation parameters of NaBH4 hydrolysis catalyzed by Co nanoparticle composite systems were calculated as 46.44 ± 1.1 kJ mol−1 for Ea, 36.39 ± 6.5 kJ mol−1 for ΔH and −170.56 ± 20.1 kJ mol−1 K−1 for ΔS.  相似文献   

20.
Herein we report the synthesis of graphitic carbon nitride (g-C3N4) by directly heating sulfuric acid treated melamine precursor. Thermoanalytical methods (TG-DSC) in combination with XRD, XPS and elemental analysis were used to characterize the condensation steps of the precursor. The TG-DSC curves clearly show significant difference in thermal behavior between the treated and untreated melamine. The sublimation of melamine during condensation was significantly suppressed by treating melamine with sulfuric acid. The decomposition of melamine sulfuric acid and the condensation of melamine occur simultaneously. The N/C ratio of the prepared carbon nitride (1.53) is slight higher than that of the ideal crystal g-C3N4 (1.33), indicating the incomplete condensation of amino groups in the material. The XPS and elemental analysis show that there is no sulfur residue in the final product. The sample synthesized from sulfuric acid treated melamine shows relatively higher BET surface area. The photocatalytic performance of the as prepared carbon nitride was evaluated under visible light irradiation (λ > 420 nm). The photocatalytic H2 production rate on sample synthesized from sulfuric acid treated melamine is 2 times higher than that on sample synthesized from untreated melamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号