首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-ethylcarbazole is one of the most promising liquid organic hydrogen carriers (LOHCs) as it can be catalytically hydrogenated and dehydrogenated at relatively moderate temperatures. In the present work, we report a systematic study on dehydrogenation of perhydro-N-ethylcarbazole over several important supported noble metal catalysts to identify the optimal catalyst for temperature-controlled dehydrogenation. The reaction takes three consecutive stages with two intermediates of octahydro-N-ethylcarbazole and tetrahydro-N-ethylcarbazole. The initial catalytic activity of the selected noble metal catalysts for the dehydrogenation process was found to follow the order of Pd > Pt > Ru > Rh. 100% selectivity toward the final product of N-ethylcarbazole and fully dehydrogenation was achieved over the supported Pt and Pd catalysts. The kinetics of the three stage dehydrogenation processes over the catalysts was studied and the rate constants were derived. The results indicate that the dehydrogenation reaction rate decreases significantly with the reaction stage for all the selected noble catalysts and the conversion from tetrahydro-N-ethylcarbazole to N-ethylcarbazole was found to be the rate-limiting step of the entire reaction process.  相似文献   

2.
This work reports a practical system of hydrogenation-coupled water–gas shift reaction (HC-WGSR) for simultaneous hydrogen production and storage. The performance of the HC-WGSR system was predicted through thermodynamic simulation. The proof-of-concept tandem water–gas shift and propene hydrogenation strategy was successfully demonstrated using a bifunctional catalyst. The hydrogen produced from the WGSR was successfully stored in propane simultaneously, and the overall CO conversion of nearly 100% overcame the equilibrium limitation of the WGSR over a wide range of space velocities (3000 - 6000 h−1) at 200 °C and 1 bar. This study demonstrated that the in situ removal/storage of H2 using the hydrogenation-coupling approach is promising even in a CO2-rich environment (20% CO2). The new approach shall see a great opportunity in using organic hydrogen carriers, e.g., benzene, toluene, N-ethylcarbazole, to expand the industrial applications, underpinning the global supply chain for hydrogen energy.  相似文献   

3.
燃料电池车车载储氢系统的技术发展与应用现状   总被引:11,自引:1,他引:11  
综述了燃料电池车车载储氢系统技术,包括高压氢、液氢、金属氢化物、低温吸附、纳米碳管高压吸附以及液体有机氢化物等的研究进展及其车载应用现状。参照燃料电池车对车载储氢系统单位重量储氢密度与体积储氢密度的目标要求,对目前已应用和处于研发阶段的一些储氢技术的性能指标和存在问题进行了分析讨论。同时对目前该领域的若干新的研究报道,如超高压轻质复合容器、混合储氢容器、b.c.c.储氢合金、超级活性碳和“浆液”双相储氢等,也作了简要介绍。  相似文献   

4.
As the candidates for large-scale hydrogen storage, liquid organic hydrogen carriers (LOHCs) exhibit evident advantages in hydrogen storage density and convenience of storage and transportation. Among them, NECZ (N-ethylcarbazole)/12H-NECZ (dodecahydro-N-ethylcarbazole) is considered as a typical system with the lower hydrogenation/dehydrogenation temperature. However, the low dehydrogenation efficiency restrict its commercial applications. In this work, the single-layer Ti3C2Tx MXene was employed as the support to load the Pt nanoparticles for the 12H-NECZ dehydrogenation reaction. The effect of transition metals, loading amounts and morphologies of catalysts were analyzed. It was found that the 3 wt% Pt/S–Ti3C2Tx catalyst exhibited the best catalytic performance with 100% conversion, 91.55% selectivity of NECZ and 5.62 wt% hydrogen release amount at 453 K, 101.325 kPa for 7 h. The product distributions and kinetics analysis suggested that the elementary reaction from 4H-NECZ to NECZ was the rate-limiting step. The selectivity of NECZ is sensitive to the dehydrogenation temperature. Combined with the XRD, SEM, HRTEM, XPS, BET and FT-IR results, it could be indicated that the special two-dimension structure of S–Ti3C2Tx and electronic effect between Pt and S–Ti3C2Tx enhanced the dehydrogenation efficiency of 12H-NECZ. The measurements of cyclic dehydrogenation indicated that the Pt/S–Ti3C2Tx catalyst exhibited good stability after 42 h. This work brought a new strategy for the design of efficient catalysts using two-dimensional materials in the applications of the liquid organic storage hydrogen technology.  相似文献   

5.
New efficient intermetallide catalysts for hydrogen storage in reversible processes of aromatics hydrogenation and naphthene dehydrogenation were studied. These catalysts provide an enhanced activity in the dehydrogenation of saturated organic molecules, with no side reactions like cracking, hydrogenolysis, ring opening, or coke formation occurring on these catalysts. The use of intermetallides provides some hydrogen storage capacity in the low-temperature region, while their catalytic activity in the dehydrogenation affords the hydrogen supply in the high-temperature range.  相似文献   

6.
The NECZ/12H-NECZ (N-ethylcarbazole/dodecahydro-N-ethylcarbazole) system is regarded as the most potential liquid organic hydrogen carrier. However, the low activity, selectivity of NECZ and high cost of catalysts for the dehydrogenation reaction restrict its efficiency and commercial applications. In this work, a series of bimetallic Pd-M(M = Cu, Ni)/SiO2 catalysts were prepared and employed to enhance catalytic activity and selectivity of NECZ for the 12H-NECZ dehydrogenation reaction. Pd3Ni1/SiO2 exhibited high catalytic performance with 100% conversion, 91.1% selectivity of NECZ and 5.63 wt% hydrogen release amount at 453 K, 101.325 kPa for 8 h. The TOF (turnover frequency) of Pd3Ni1/SiO2 is enhanced by 42.4% compared with Pd/SiO2. Combined with the characterization analysis, it was found that adjusting the alloying degree or the alloy phase in the PdCu and PdNi bimetallic catalysts could significantly enhance the dehydrogenation activity and selectivity, which were dependent on the component of bimetallic catalysts. This work may provide theoretical guidance for designing the efficient and low-cost bimetallic catalysts for the dehydrogenation of 12H-NECZ, which could boost the commercial applications of liquid organic hydrogen carriers.  相似文献   

7.
储氢技术作为氢气生产与使用之间的桥梁,至关重要。本文综述了目前常用的储氢技术,主要包括物理储氢、化学储氢与其它储氢。物理储氢主要包括高压气态储氢与低温液化储氢,具有低成本、易放氢、氢气浓度高等特点,但安全性较低。化学储氢包括有机液体储氢、液氨储氢、配位氢化物储氢、无机物储氢与甲醇储氢。其虽保证了安全性,但其放氢难,且易发生副反应,氢气浓度较低。其它储氢技术包括吸附储氢与水合物法储氢。吸附储氢技术的储氢效率受吸附剂的影响较大,且不同程度的存在放氢难、成本高、储氢密度不高等问题。水合物法储氢具有易脱氢、成本低、能耗低等特点,但其储氢密度较低。在此基础上,本文基于现状分析,简要展望了储氢技术今后的研究方向。  相似文献   

8.
In this paper, a comprehensive semi-analytical model was presented to investigate pressure transient behavior for asymmetrically fractured wells in organic compound reservoir of hydrogen and carbon with dual-permeability behavior. Stehfest inversion algorithm can be used to transform it back into time domain to obtain pressure solution. The presented solution was validated well with numerical solutions. Flow characteristics for asymmetrically fractured wells in dual-permeability organic compound reservoir of hydrogen and carbon were divided into five regime. The effects of some important parameters on dimensionless pressure and its derivative curves were analyzed in details, including inter-porosity flow coefficient from matrix to natural fractures λ, storage coefficient ω, fracture asymmetry factor θ and permeability ratio κ. The presented model can be used to predict production performance and do well test analysis in the development of dual-permeability organic compound reservoir of hydrogen and carbon.  相似文献   

9.
Significant technological revolution which allows the use of hydrogen as an efficient energy carrier and mitigates the use of fossil fuels is a crucial need of the day. Much attention has been paid to cope with the recent, reversible, and sustainable hydrogen storage technologies. Among recent strategies, formic acid (FA) has been marked as an efficient liquid chemical for hydrogen storage. The liquid organic hydrogen carriers are based on some vital characteristics that particularly reduce toxicity and consist of maximum hydrogen with efficient recyclability. This review summarizes the recent reports, studies, and investigations concerning the hydrogen production from dehydrogenation of FA, which is almost free of carbon monoxide and is considered as an excellent material in fuel cell (FC) technology. A comprehensive critical review is carried out to link the latest research progress for subsequent achievements and to investigate both the homogeneous and heterogeneous catalysts. Among these catalysts, the main focus is on precious and non-precious metals that have been progressively increased during the past decade. Furthermore, the recent developments in the generation of high-pressure hydrogen gas and its practical applications have been highlighted for better understanding.  相似文献   

10.
Metal hydrides are considered as promising candidates for hydrogen storage as they exhibit higher energy densities than compressed gas storage storages. This study represents a theoretical thermodynamic analysis of metal hydride‐based hydrogen storage systems, focusing mainly on the energy demand to operate the storage system and the resulting efficiency. The main energy demand occurs during hydrogen release. This energy demand is composed of three contributions: the heat required to heat the hydride up to desorption temperature, the heat of reaction and the work of compression to reach the targeted outlet pressure. A sensitivity analysis was performed to demonstrate the impact of several parameters, for example, heat of reaction and hydrogen uptake on the energy balance. The most influential parameter is the heat of reaction. The hydrogen uptake does not have a noticeable influence as long as it is not too low. Several possibilities to improve the efficiency of the storage system are discussed (heat integration and the application of a heat storage system). Heat integration can significantly improve the overall efficiency, whereas the application of a heat storage system does not seem realistic. Compared with other hydrogen storage technologies, metal hydrides can feature higher efficiencies than low‐temperature hydrogen storage concepts, for example, liquefied or cryo‐adsorbed hydrogen. The efficiencies of a metal hydride storage system are similar to those reached with a system based on liquid organic hydrogen carriers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
With the methods of density functional theory (DFT) and molecular simulations, we have investigated the structural characteristics and hydrogen storage properties of five new reported boron-phosphorus cube based covalent organic frameworks (BP-COFs) with the higher valency. The structural parameters of five BP-COFs were researched by the numeric Monte Carlo (NMC) method, and the hydrogen adsorption properties were studied with grand canonical Monte Carlo (GCMC) simulations under the pressure of 0.1 bar–100 bar at both 77 K and 298 K. The results reveal that BP-COF-4 and BP-COF-5 possess the higher hydrogen adsorption capacities than BP-COF-1 to BP-COF-3 at both 77 K and 298 K. The possible methods to improve the H2 adsorption properties of five BP-COFs are also proposed. We hope this study may provide some reference and inspiration for exploring new COFs with the higher valency as high-performance hydrogen storage materials in future.  相似文献   

12.
This review addresses the question of using magnesium and magnesium-based alloys as “rechargeable hydrogen storage” media. The effect of addition of organic compounds as well as other metals (both transition and non-transition elements) on the sorption characteristics of magnesium is considered in detail. The current status of information in this field is reviewed with a view to evaluating the potential of these materials for use as hydrogen storage media in vehicular applications.  相似文献   

13.
sH hydrate is a kind of hydrate that is consisted of only organic large molecule and water. Since each organic large molecule can bring five small cages that easily capture hydrogen molecules, sH hydrate is potential hydrogen storage material. In this paper, methylcyclohexane-hydrogen hydrate was used for hydrogen storage. Two different processes, the simultaneous formation and the induced formation, were studied by molecular dynamics simulation. The simultaneous formations of methylcyclohexane-hydrogen binary hydrate were simulated at 230 K & 110 MPa and the hydrogen storage capacity of binary hydrate was 1.08 wt%. The induced formation of methylcyclohexane-hydrogen binary hydrate was simulated at 240–260 K &20–110 MPa.The simulation results showed that hydrogen storage capacity of hydrate was mainly affected by temperature. The hydrogen storage capacity of hydrates was low (≤1.0 wt%) at 250–260 K even the pressure increased to 110 MPa. While the hydrogen storage capacity was greatly improved (≥1.6 wt%) at 240 K. At 250–260 K, hydrogen molecules only entered the cavities that were near the interface, which seems that 512 cages layers obstructed the hydrogen molecules. The results indicated that the induced hydrogen formation required milder conditions than the simultaneously hydrogen storage formation, and the hydrogen storage was higher.  相似文献   

14.
N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NECZ/12H-NECZ) was a promising system for hydrogen storage applications. 1.0 wt% Pt/TiO2 was regarded as the optimal loading in Pt/TiO2 catalyst applied in the 12H-NECZ dehydrogenation reaction. The hydrogen release amount, selectivity to NECZ and TOF of 12H-NECZ dehydrogenation are 5.75 wt %, 98% and 229.73 min−1 at 453 K. Compared with the commercial 5.0 wt% Pd and Pt-based catalysts, it exhibited very high activity, selectivity and stability for 12H-NECZ dehydrogenation with low Pt loading. Combined with the XRD, XPS, HRTEM, TPR analysis, it was indicated that the enhanced catalytic performance was due to the SMSI (strong metal-supporting interaction) between Pt and TiO2 support, which accelerated the rate-limiting step and enhanced the whole dehydrogenation reaction. This work may be beneficial for the commercial application of Pt/TiO2 catalysts in the Liquid Organic Hydrogen Carrier (LOHC) system.  相似文献   

15.
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here, we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers, with a particular focus on the challenge of ensuring easily regenerable, high-density hydrogen storage.  相似文献   

16.
On the basis of literature research and expert consultation on hydrogen storage, this paper is the first to use the bibliometric method to conduct data mining and visualization analysis for the development of international hydrogen storage research. A total of 22612 publications on hydrogen storage published from 1900 to 2019 were obtained. The number of citations and research authors per year is also counted. Some indicators are used in this paper to evaluate countries, research institutions, researchers, journals and so on, such as IF, H-index, TC and CPA. We also use VOS viewer to visualize keywords. Results show that the literature on hydrogen storage has been recently increasing, particularly from 2009 to 2018. The study on hydrogen storage has entered a stable and high-frequency period, with a total of 16348 papers, which account for 72.3% of the total research papers on hydrogen storage. During this period, the number of authors who studied hydrogen storage exceeded 3000 and reached 3265 in 2008. The average number of citations per year was 2672.41. China's total volume of publications reached 7239, with 12 research institutions ranking among the top 20, and 9 researchers ranking among the top 10 in this field. China plays an important role in international research on hydrogen storage. However, the US accounts for the highest h-index (220), the highest TC (233734) and the highest CPA (59.86), which shows that the United States has the strongest influence on the research of hydrogen storage. In terms of the number of articles, the INTERNATIONAL JOURNAL OF HYDROGEN ENERGY ranked first with 3413 articles, followed by the JOURNAL OF ALLOYS AND COMPOUNDS with a total of 2131 articles. Notably, the average number of citations of the articles in the FORUM OF THE AMERICAN CHEMICAL SOCIETY and the ANGEWANDTE CHEMIE-INTERNATIONAL EDITION exceeded 150 times, that is, 165.2 and 157.14 with impact factors of 14.695 and 12.257, respectively. International hydrogen storage disciplines, such as chemistry (71.38%), materials science (38.81%), and energy science (22.10%), are distributed or related interdisciplinary research areas. The research hotspots of hydrogen storage are chemical and adsorption hydrogen storages, such as hydrogen fuel cells, metal hydride, metal–organic framework, and carbon nanotube. By contrast, research on high-pressure gaseous and liquid hydrogen storages is relatively few. Researchers are suggested to give more attention to high-pressure gaseous and liquid hydrogen storages and consider the entire process of hydrogen energy utilization. Moreover, they are suggested to propose the optimal hydrogen storage mode by combining various hydrogen storage methods. Researchers must not only increase the number of their published papers but also enhance the quality. Cooperation between countries and research institutions should be further strengthened, and exchange between different disciplines is also needed to promote the interdisciplinary development of hydrogen storage and transportation.  相似文献   

17.
Metal organic framework (MOF) materials have emerged as the adsorbent materials with the highest H2 storage densities on both a volumetric and gravimetric basis. While measurements of hydrogen storage at the material level (primarily at 77 K) have been published for hundreds of MOFs, estimates of the system-level hydrogen storage capacity are not readily available. In this study, hydrogen storage capacities are estimated at the system-level for MOFs with the highest demonstrated volumetric and gravimetric H2 storage densities. System estimates are based on a single tank cryo-adsorbent system that utilizes a type-1 tank, multi-layer vacuum insulation, liquid N2 cooling channels, in-tank heat exchanger, and a packed MOF powder inside the tank. It is found that with this powder-based system configuration, MOFs with ultra-high gravimetric surface areas and hydrogen adsorption amounts do not necessarily provide correspondingly high volumetric or gravimetric storage capacities at the system-level. Meanwhile, attributes such as powder packing efficiency and system cool-down temperature are shown to have a large impact on the system capacity. These results should shed light on the material properties that must to be optimized, as well as highlight the important design challenges for cryo-adsorbent hydrogen storage systems.  相似文献   

18.
Recent advancements in synthesizing materials potential for hydrogen storage have greatly forced the hydrogen storage technology ahead in recent years. Hollow spheres, with unparalleled characteristics like low density and high specific surface area, have emerged as one of the most promising alternatives for hydrogen storage applications. In the present review, the main synthesis approaches of hollow spheres including spray drying, Kirkendall, template-free and, template-assisted methods are surveyed and concisely described. In addition, different types of hollow spheres such as hollow carbons, hollow glasses and other less-common types like Boron nitrides and metal hollow spheres have been tackled with special focus on adsorption/desorption capacities as well as the kinetic of hydrogen storage/release. In addition to the recent progresses, some perspective and outlook on the advancement of hollow spheres and challenges in terms of synthesis methods and hydrogen storage performance were presented.  相似文献   

19.
Carbon materials were obtained by the thermal decomposition of organic reagents, and different surface states are achieved by treatment in different conditions. SEM, XRD and BET were used to characterize the samples. Hydrogen storage of the samples was measured at liquid nitrogen temperature. Combining these results and others’ work, a mechanism for hydrogen storage in carbon materials is proposed that hydrogen is stored at different sites with different mechanisms. With this hypothesis, the hydrogen storage properties of carbon materials can be forecasted quantitatively.  相似文献   

20.
氢能的利用是当今世界发展必然趋势,使用超临界氢存储技术可对氢能进行储存。介绍了超临界氢,并详细分析了超临界储氢、气态压缩储氢和低温液态储氢的优缺点。然后,对超临界储氢技术进行了详细论述,介绍了超临界吸附储氢和低温压力容器储存超临界氢两种技术的研究进展。最后,根据超临界氢存储技术的研究现状,提出了一些对超临界氢存储技术的发展及应用具有一定指导意义的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号