首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the catalytic effect of Ni and ZrO2 nanoparticles on the hydrogen absorption and desorption properties of MgH2 has been investigated. The MgH2 nanocomposites were prepared by high-energy ball-milling. The morphology, phase structure, thermal behavior, and hydrogen storage properties of the materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), and the pressure-composition temperature (PCT) methods. ZrO2 and Ni nanoparticles were homogenously dispersed into the MgH2 matrix. The calculated apparent activation energy for dehydrogenation was 63.4 kJ/mol, which was decreased by 80.1 kJ/mol compared to that of as-milled MgH2. As a result, MgH2+5 wt.%Ni+5 wt.%ZrO2 demonstrated improved dehydrogenation and hydrogenation kinetics at 310 °C. The MgH2+5 wt.%Ni+5 wt.%ZrO2 sample released about 6.83 wt.% and absorbed about 6.10 wt.% in less than 30 min. Therefore, the co-catalysis of Ni and ZrO2 significantly enhances the hydrogenation and dehydrogenation properties of MgH2.  相似文献   

2.
To improve the dehydrogenation/hydrogenation performance of magnesium hydride (MgH2), a nickel-vanadium bimetallic oxide (NiV2O6) was prepared by a simple hydrothermal method using ammonium metavanadate and nickel nitrate as raw materials. This oxide was used to improve the hydrogen storage performance of MgH2. NiV2O6 reacted with Mg to form Mg2Ni and V2O5; Mg2Ni and V2O5 played an important role in improving the hydrogen storage properties of MgH2. The NiV2O6-doped MgH2 had an excellent hydrogen absorption and desorption kinetics performance, and it could absorb 5.59 wt% of hydrogen within 50 min at 150 °C and release about 5.3 wt% of hydrogen within 12 min. The apparent activation energies for the dehydrogenation and hydrogenation of MgH2-NiV2O6 were 92.9 kJ mol?1 and 24.9 kJ mol?1, respectively. These were 21.7% and 66.3% lower than those of MgH2, respectively. The mechanism analysis demonstrated that the improved kinetic properties of MgH2 resulted from the heterogeneous catalysis of vanadium and nickel.  相似文献   

3.
In order to improve the hydrogenation/dehydrogenation properties of the Mg/MgH2 system, the nickel hydride complex NiHCl(P(C6H11)3)2 has been added in different amounts to MgH2 by planetary ball milling. The hydrogen storage properties of the formed composites were studied by different thermal analyses methods (temperature programmed desorption, calorimetric and pressure-composition-temperature analyses). The optimal amount of the nickel complex precursor was found to be of 20 wt%. It allows to homogeneously disperse 1.8 wt% of nickel active species at the surface of the Mg/MgH2 particles. After the decomposition of the complex during MgH2 dehydrogenation, the formed composite is stable upon cycling at low temperature. It can release hydrogen at 200 °C and absorb 6.3 wt% of H2 at 100 °C in less than 1 h. The significantly enhanced H2 storage properties are due to the impact of the highly dispersed nickel on both the kinetics and thermodynamics of the Mg/MgH2 system. The hydrogenation and dehydrogenation enthalpies were found to be of −65 and 63 kJ/mol H2 respectively (±75 kJ/mol H2 for pure Mg/MgH2) and the calculated apparent activation energies of the hydrogen uptake and release processes are of 22 and 127 kJ/mol H2 respectively (88 and 176 kJ/mol H2 for pure Mg/MgH2). The change in the thermodynamics observed in the formed composite is likely to be due to the formation of a Mg0.992Ni0.008 phase during dehydrogenation/hydrogenation cycling. The impact of another hydride nickel precursor in which chloride has been replaced by a borohydride ligand, namely NiH(BH4)(P(C6H11)3)2, is also reported.  相似文献   

4.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   

5.
We propose a simple strategy to effectively improve the hydrogenation and dehydrogenation kinetics of Mg based hydrogen storage alloys. We designed and prepared an Mg91.9Ni4.3Y3.8 alloy consisting of a large quantity of long-period stacking ordered (LPSO) phases. A type of highly dispersed multiphase nanostructure, which can markedly promote the de/hydrogenation kinetics, has been obtained utilizing the decomposition of LPSO phases at first a few of hydrogenation reactions. The fine structures of LPSO phases and the microstructural evolutions of the alloy during hydrogenation and dehydrogenation reactions were in detail characterized by means of transmission electron microscopy (TEM). The LPSO phases transformed to MgH2, Mg2NiH4, and YH3 after the first hydrogenation. The highly dispersed nanostructure at macro and micro (nano) scale range remains even after several de/hydrogenation cycles. The alloy shows excellent hydrogen storage properties and its reversible hydrogen absorption/desorption capacities are about 5.8 wt% at 300 °C. Particularly, the alloy exhibits very fast dehydrogenation kinetics. The dehydrogenated sample can release approximately 5 wt% hydrogen at 300 °C within 200 s and 5.5 wt% within 600 s. We elucidate the structural mechanism of the alloy with outstanding hydrogen storage performance.  相似文献   

6.
The widespread application of Mg as a hydrogen storage material has been limited by its slow absorption and desorption kinetics at moderate temperatures. Aiming at improving the de-/absorption kinetics of Mg-based alloys by in situ formed catalysts and understanding the desorption factors, Mg–Ce and Mg–Ce–Ni alloys with different Ce contents are prepared. The phase components, microstructure and hydrogen storage properties have been carefully investigated. It is shown that an 18R-type long-period stacking ordered (LPSO) phase is formed in as-melt Mg–Ce–Ni ternary alloy together with random stacking faults. Abundant in situ formed CeH2.73 particles with particle size less than 100 nm are observed on the matrix after hydrogenation. It is found in isothermal hydrogenation and dehydrogenation kinetic curves that Ni significantly favors desorption process, while Ce is more conducive to absorption. After partial dehydrogenation of Mg–Ce binary alloy, the initial desorption temperature decreases significantly when desorbing again. The primary-formed Mg phase on the surface of MgH2 accounts for the improved desorption performance.  相似文献   

7.
MgH2, MgH2–TiH2 nanocomposites and their deuterated analogues have been obtained by reactive ball milling and their kinetic and cycling hydrogenation properties have been analysed by isotope measurements and high-pressure differential scanning calorimetry (HP-DSC). Kinetics of material synthesis depends on both Ti-content and the isotopic nature of the gas. For pure Mg, the synthesis is controlled by isotope diffusion in Mg and therefore MgH2 forms faster than MgD2. For the MgH2–TiH2 nanocomposites, the synthesis is controlled by the efficiency of milling. Kinetics of reversible hydrogen/deuterium sorption in nanocomposites have been studied at 548 K. The rate limiting step is isotope diffusion for absorption and Mg/MgH2 interface displacement for desorption. HP-DSC measurements demonstrate that the TiH2 phase acts as a gateway for hydrogen sorption even in presence of MgO and provides abundant nucleation sites for Mg and MgH2 phases. The 0.7MgH2–0.3TiH2 nanocomposite exhibits steady hydrogen storage capacity after 100 cycles of absorption–desorption.  相似文献   

8.
Carbon aerogel (CA) microspheres with highly crumpled graphene–like sheets surface and network internal structure have been successfully prepared by an inverse emulsion polymerization routine, subsequently ball milled with Mg powder to fabricate Mg@CA. The Mg change into MgH2 phases, decorating on the surface of the CA forming MgH2@CA microspheres composite after the hydrogenation process at 400 °C. The MgH2@CA microspheres composite displays MgH2–CA shell–core structure and shows enhanced hydrogenation and dehydrogenation rates. It can quickly uptake 6.2 wt% H2 within 5 min at 275 °C and release 4.9 wt% H2 within 100 min at 350 °C, and the apparent activation energy for the dehydrogenation is decreased to 114.8 kJ mol?1. The enhanced sorption kinetics of the composite is attributed to the effects of the in situ formed MgH2 NPs during the hydrogenation process and the presence of CA. The nanosized MgH2 could reduce the hydrogen diffusion distance, and the CA provides the sites for nucleation and prevents the grains from agglomerating. This novel method of in situ producing MgH2 NPs on zero–dimensional architecture can offer a new horizon for obtaining high performance materials in the hydrogen energy storage field.  相似文献   

9.
Magnesium hydride is a leading hydrogen storage material with high hydrogen content, however, suffers with sluggish kinetics. Several methods have been adopted to improve its kinetics, out of which, the addition of catalyst is an impressive way. Carbon materials have shown their promises as catalyst for several hydrogen storage materials. The present work is devoted to investigating the catalytic effects of exfoliated graphite and graphene nanoballs on dehydrogenation kinetics of MgH2. The lowest onset temperature of 282 °C is observed for graphene nanoballs modified MgH2 system. Exfoliated graphite mixed MgH2 desorbed hydrogen at onset temperature 301 °C which is also less than the dehydrogenation temperature of pure MgH2 (410 °C). The dehydrogenation kinetics has significantly improved by the addition of these catalysts as compared to the pure MgH2. The activation energy for the hydrogen desorption of MgH2 was reduced from 170 (pure MgH2) to 136 ± 2 and 140 ± 2 kJ/mol by the addition of exfoliated graphite and graphene nanoballs, respectively. The XRD results confirmed the presence of MgH2 after milling with exfoliated graphite and graphene nanoballs that indicates that there are no reactions during the milling thus both the additives are effective to improve the dehydrogenation as a catalyst.  相似文献   

10.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

11.
(2LiNH2 + MgH2) system is one of the most promising hydrogen storage materials due to its suitable operation temperature and high reversible hydrogen storage capacity. In studies and applications, impurities such as CO, CO2, O2, N2 and CH4 are potential factors which may influence its performance. In the present work, hydrogen containing 1 mol% CO is employed as the hydrogenation gas source, and directly participates in the reaction to investigate the effect of CO on the hydrogen sorption properties of (2LiNH2 + MgH2) system. The results indicate that the hydrogen capacity of the (Mg(NH2)2 + 2LiH) system declines from 5 wt.% to 3.45 wt.% after 6 cycles of hydrogenation and dehydrogenation, and can not restore to its initial level when use purified hydrogen again. The hydrogen desorption kinetics decreases obviously and the dehydrogenation activation energy increases from 133.35 kJ/mol to 153.35 kJ/mol. The main reason for these is that two new products Li2CN2 and MgO appear after (2LiNH2 + MgH2) react with CO. They are formed on the surface of materials particles, which may not only cause a permanent loss of NH2−, but also prevent the substance transmission during the reaction process. After re-mechanically milling, both kinetics and dehydrogenation activation energy can be recovered to the initial level.  相似文献   

12.
To find a solution to efficiently exploit renewable energy sources is a key step to achieve complete independence from fossil fuel energy sources. Hydrogen is considered by many as a suitable energy vector for efficiently exploiting intermittent and unevenly distributed renewable energy sources. However, although the production of hydrogen from renewable energy sources is technically feasible, the storage of large quantities of hydrogen is challenging. Comparing to conventional compressed and cryogenic hydrogen storage, the solid-state storage of hydrogen shows many advantages in terms of safety and volumetric energy density. Among the materials available to store hydrogen, metal hydrides and complex metal hydrides have been extensively investigated due to their appealing hydrogen storage properties. Among several potentials candidates, magnesium hydride (MgH2) and lithium borohydride (LiBH4) have been widely recognized as promising solid-state hydrogen storage materials. However, before considering these hydrides ready for real-scale applications, the issue of their high thermodynamic stability and of their poor hydrogenation/dehydrogenation kinetics must be solved. An approach to modify the hydrogen storage properties of these hydrides is nanoconfinement. This review summarizes and discusses recent findings on the use of porous scaffolds as nanostructured tools for improving the thermodynamics and kinetics of MgH2 and LiBH4.  相似文献   

13.
Hydrogen storage nanocomposites prepared by high energy reactive ball milling of magnesium and vanadium alloys in hydrogen (HRBM) are characterised by exceptionally fast hydrogenation rates and a significantly decreased hydride decomposition temperature. Replacement of vanadium in these materials with vanadium-rich Ferrovanadium (FeV, V80Fe20) is very cost efficient and is suggested as a durable way towards large scale applications of Mg-based hydrogen storage materials. The current work presents the results of the experimental study of Mg–(FeV) hydrogen storage nanocomposites prepared by HRBM of Mg powder and FeV (0–50 mol.%). The additives of FeV were shown to improve hydrogen sorption performance of Mg including facilitation of the hydrogenation during the HRBM and improvements of the dehydrogenation/re-hydrogenation kinetics. The improvements resemble the behaviour of pure vanadium metal, and the Mg–(FeV) nanocomposites exhibited a good stability of the hydrogen sorption performance during hydrogen absorption – desorption cycling at T = 350 °C caused by a stability of the cycling performance of the nanostructured FeV acting as a catalyst. Further improvement of the cycle stability including the increase of the reversible hydrogen storage capacity and acceleration of H2 absorption kinetics during the cycling was observed for the composites containing carbon additives (activated carbon, graphite or multi-walled carbon nanotubes; 5 wt%), with the best performance achieved for activated carbon.  相似文献   

14.
Aiming to gain insight on the hydrogen storage properties of Mg-based alloys, partial hydrogenation and hydrogen pressure related de-/hydrogenation kinetics of Mg–Ni–La alloys have been investigated. The results indicate that the phase boundaries, such as Mg/Mg2Ni and Mg/Mg17La2, distributed within the eutectics can act as preferential nucleation sites for β-MgH2 and apparently promote the hydrogenation process. For bulk alloy, it is observed that the hydrogenation region gradually grows from the fine Mg–Ni–La eutectic to primary Mg region with the extension of reaction time. After high-energy ball milling, the nanocrystalline powders with crystallite size of 12~20 nm exhibit ameliorated hydrogen absorption/desorption performance, which can absorb 2.58 wt% H2 at 368 K within 50 min and begin to desorb hydrogen from ~508 K. On the other side, variation of hydrogen pressure induced driving force significantly affects the reaction kinetics. As the hydrogenation/dehydrogenation driving forces increase, the hydrogen absorption/desorption kinetics is markedly accelerated. The dehydrogenation mechanisms have also been revealed by fitting different theoretical kinetics models, which demonstrate that the rate-limiting steps change obviously with the variation of driving forces.  相似文献   

15.
Herein, a novel flower-like Ni MOF with good thermostability is introduced into MgH2 for the first time, and which demonstrates excellent catalytic activity on improving hydrogen storage performance of MgH2. The peak dehydrogenation temperature of MgH2-5 wt.% Ni MOF is 78 °C lower than that of pure MgH2. Besides, MgH2-5 wt.% Ni MOF shows faster de/hydrogenation kinetics, releasing 6.4 wt% hydrogen at 300 °C within 600 s and restoring about 5.7 wt% hydrogen at 150 °C after dehydrogenation. The apparent activation energy for de/hydrogenation reactions are calculated to be 107.8 and 42.8 kJ/mol H2 respectively, which are much lower than that of MgH2 doped with other MOFs. In addition, the catalytic mechanism of flower-like Ni MOF is investigated in depth, through XRD, XPS and TEM methods. The high catalytic activity of flower-like Ni MOF can be attributed to the combining effect of in-situ generated Mg2Ni/Mg2NiH4, MgO nanoparticles, amorphous C and remaining layered Ni MOF. This research extends the knowledge of elaborating efficient catalysts via MOFs in hydrogen storage materials.  相似文献   

16.
Hydrogen storage in solids of hydrides is advantageous in comparison to gaseous or liquid storage. Magnesium based materials are being studies for solid-state hydrogen storage due to their advantages of high volumetric and gravimetric hydrogen storage capacity. However, unfavorable thermodynamic and kinetic barriers hinder its practical application. In this work, we presented that kinetics of Mg-based composites were significantly improved during high energy ball milling in presence of various types of carbon, including plasma carbon produced by plasma-reforming of hydrocarbons, activated carbon, and carbon nanotubes. The improvement of the kinetics and de-/re-hydrogenation performance of MgH2 and TiC-catalysed MgH2 by introduction of carbon are strongly dependent on the milling time, amount of carbon and carbon structure. The lowest dehydrogenation temperature was observed at 180 °C by the plasma carbon–modified MgH2/TiC. We found that nanoconfinement of carbon structures stabilised Mg-based nanocomposites and hinders the nanoparticles growth and agglomeration. Plasma carbon was found to show better effects than the other two carbon structures because the plasma carbon contained both few layer graphene sheets that served as an active dispersion matrix and amorphous activated carbons that promoted the spill-over effect of TiC catalysed MgH2. The strategy in enhancing the kinetics and thermodynamics of Mg-based composites is leading to a better design of metal hydride composites for hydrogen storage.  相似文献   

17.
Magnesium hydride (MgH2) is a promising candidate as a hydrogen storage material. However, its hydrogenation kinetics and thermodynamic stability still have room for improvement. Alloying Mg with Al has been shown to reduce the heat of hydrogenation and improve air resistance, whereas graphite helps accelerating hydrogenation kinetics in pure Mg. In this study, the effects of simultaneous Al alloying and graphite addition on the kinetics and air-exposure resistance were investigated on the Mg60Al40 system. The alloys were pulverized through high-energy ball milling (hereinafter HEBM). We tested different conditions of milling energy, added graphite contents, and air exposure times. Structural characterization was conducted via X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). H2 absorption and desorption properties were obtained through volumetry in a Sieverts-type apparatus and Differential Scanning Calorimetry (DSC). The desorption activation energies were calculated using DSC curves through Kissinger analysis. Mg60Al40 with 10 wt% graphite addition showed fast activation kinetics, even after 2 years of air exposure. Graphite addition provided a catalytic effect on ball-milled Mg–Al alloys by improving both absorption and desorption kinetics and lowering the activation energy for desorption from 189 kJ/mol to 134 kJ/mol. The fast kinetics, reduced heat of reaction, and improved air resistance of these materials make them interesting candidates for potential application in hydride-based hydrogen storage tanks.  相似文献   

18.
The effects of NaOH addition on hydrogen absorption/desorption properties of the Mg(NH2)2-2LiH system were investigated systematically by means of dehydrogenation/hydrogenation measurements and structural analyses. It is found that the NaOH-added Mg(NH2)2-2LiH samples exhibit an enhanced dehydrogenation/hydrogenation kinetics. In particular, a ∼36 °C reduction in the peak temperature for dehydrogenation is achieved for the Mg(NH2)2-2LiH-0.5NaOH sample with respect to the pristine sample. Structural examinations reveal that NaOH reacts with Mg(NH2)2 and LiH to convert to NaH, LiNH2 and MgO during ball milling. Then, their co-catalytic effects result in a significant improvement in the dehydrogenation/hydrogenation kinetics of the Mg(NH2)2-2LiH system. This finding will help in designing and optimizing the novel high-performance catalysts to further improve hydrogen storage in the amide-hydride combined systems.  相似文献   

19.
This is a first report on the use of the bis(tricyclohexylphosphine)nickel (II) dichloride complex (abbreviated as NiPCy3) into MgH2 based hydrogen storage systems. Different composites were prepared by planetary ball-milling by doping MgH2 with (i) free tricyclohexylphosphine (PCy3) without or with nickel nanoparticles, (ii) different NiPCy3 contents (5–20 wt%) and (iii) nickel and iron nanoparticles with/without NiPCy3. The microstructural characterization of these composites before/after dehydrogenation was performed by TGA, XRD, NMR and SEM-EDX. Their hydrogen absorption/desorption kinetics were measured by TPD, DSC and PCT. All MgH2 composites showed much better dehydrogenation properties than the pure ball-milled MgH2. The hydrogen absorption/release kinetics of the Mg/MgH2 system were significantly enhanced by doping with only 5 wt% of NiPCy3 (0.42 wt% Ni); the mixture desorbed H2 starting at 220 °C and absorbed 6.2 wt% of H2 in 5 min at 200 °C under 30 bars of hydrogen. This remarkable storage performance was not preserved upon cycling due to the complex decomposition during the dehydrogenation process. The hydrogen storage properties of NiPCy3-MgH2 were improved and stabilized by the addition of Ni and Fe nanoparticles. The formed system released hydrogen at temperatures below 200 °C, absorbed 4 wt% of H2 in less than 5 min at 100 °C, and presented good reversible hydriding/dehydriding cycles. A study of the different storage systems leads to the conclusion that the NiPCy3 complex acts by restricting the crystal size growth of Mg/MgH2, catalyzing the H2 release, and homogeneously dispersing nickel over the Mg/MgH2 surface.  相似文献   

20.
Herein, a new type of trimesic acid-Ni based metal organic framework (TMA-Ni MOF) was synthesized and then, its derivative Ni@C was introduced into MgH2 as destabilizer through high energy ball milling to prepare a Mg–Ni@C–H composite. X-ray diffraction analyses indicate the formation of Mg2Ni/Mg2NiH4 as major phases after dehydrogenation/rehydrogenation of the composite, respectively. Two hydrogen absorption plateaus are observed in the Mg–Ni@C–H composite, corresponding to the hydrogenation of Mg and Mg2Ni, with the enthalpy change values of −75.8 and −52.3 kJ mol−1 H2 respectively. Thus, it can be concluded that a destabilization effect is brought by Ni@C on thermodynamic properties of MgH2. In addition, the hydriding/dehydriding kinetics of MgH2 is notably accelerated with the addition of Ni-based MOF derivative. The activation energy values of both hydrogen absorption and desorption are significantly lowered down with the assistance of Ni@C. Moreover, stable hydrogen de/absorption capacity and kinetics are remained during 25 cycles of high-rate re/dehydrogenation, which can be ascribed to the carbon-wrapped structure of the composite, with which the aggregation of the nanosized particles can be evidently avioded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号