共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of a direct methanol fuel cell (DMFC) operating with hydroxide ion conducting membranes is reported. Evaluation of the fuel cell was performed using membrane electrode assemblies incorporating carbon-supported platinum/ruthenium anode and platinum cathode catalysts and ADP alkaline membranes. Catalyst loadings used were 1 mg cm−2 Pt for both anode and cathode. The effect of temperature, oxidant (air or oxygen) and methanol concentration on cell performance is reported. The cell achieved a power density of 16 mW cm−2, at 60 °C using oxygen. The performance under near ambient conditions with air gave a peak power density of approximately 6 mW cm−2. 相似文献
2.
Jin-Ho Kim Hae-Kyoung Kim Kwang-Taek Hwang Jai-Young Lee 《International Journal of Hydrogen Energy》2010
This report details development of an air-breathing direct methanol alkaline fuel cell with an anion-exchange membrane. The commercially available anion-exchange membrane used in the fuel cell was first electrochemically characterized by measuring its ionic conductivity, and showed a promising result of 1.0 × 10−1 S cm−1 in a 5 M KOH solution. A laboratory-scale direct methanol fuel cell using the alkaline membrane was then assembled to demonstrate the feasibility of the system. A high open-circuit voltage of 700 mV was obtained for the air-breathing alkaline membrane direct methanol fuel cell (AMDMFC), a result about 100 mV higher than that obtained for the air-breathing DMFC using a proton exchange membrane. Polarization measurement revealed that the power densities for the AMDMFC are strongly dependent on the methanol concentration and reach a maximum value of 12.8 mW cm−2 at 0.3 V with a 7 M methanol concentration. A durability test for the air-breathing AMDMFC was performed in chronoamperometry mode (0.3 V), and the decay rate was approximately 0.056 mA cm−2 h−1 over 160 h of operation. The cell area resistance for the air-breathing AMDMFC was around 1.3 Ω cm2 in the open-circuit voltage (OCV) mode and then is stably supported around 0.8 Ω cm2 in constant voltage (0.3 V) mode. 相似文献
3.
Guoshun LiuYuming Shang Xiaofeng Xie Shubo WangJinhai Wang Yaowu WangZongqiang Mao 《International Journal of Hydrogen Energy》2012,37(1):848-853
Alkaline fuel cells suggest solution for the problems of low methanol oxidation kinetics and methanol crossover, which are limiting the development of direct methanol fuel cells. In this work, a novel anion exchange membrane, quaternized poly(aryl ether oxadiazole), was prepared through polycondensation, grafting and quaternization. The ionic conductivity of as-synthesized anion exchange membrane can reach up to 2.79 × 10−2 S/cm at 70 °C. The physical and chemical stability of the anion exchange membranes could also meet the requirement for alkaline direct methanol fuel cells. 相似文献
4.
Hongying Hou Gongquan Sun Ronghuan He Baoying Sun Wei Jin He Liu Qin Xin 《International Journal of Hydrogen Energy》2008
An anion exchange membrane for alkaline direct methanol fuel cell (ADMFC) was prepared by doping polybenzimidazole(PBI) membrane with KOH. The obtained membrane was characterized by means of XRD, TGA–DTA, AC and so on. The results suggested that it possessed satisfying thermal stability and comparable mechanical strength with acid doped PBI. At room temperature, methanol permeability through this membrane was one order of magnitude lower than that of Nafion® membrane, while its ionic conductivity was comparable with that of other anion exchange membranes in literatures. For ADMFC at 90 °C based on this PBI/KOH membrane electrolyte, the peak power density was about 31 mW/cm2, which was significantly improved mainly due to this membrane's high thermal stability, fast kinetics of electrochemical reactions and lower methanol permeability. 相似文献
5.
MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes
This paper reports on the fabrication of MEA for alkaline direct ethanol fuel cell (ADEFC). The MEA was fabricated using non-platinum electrocatalysts and a membrane of alkali doped polybenzimidazole (PBI). The employed oxygen reduction catalyst was prepared by pyrolysis of 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) supported on XC72 carbon. This catalyst is tolerant to ethanol. Electrocatalyst at the anode was RuV alloy supported on XC72 carbon. It was synthesized by reduction of respective salts at elevated temperature. Single cell power density of 100 mW cm−2 at U = 0.4 V was achieved at 80 °C using air at ambient pressure and 3 M KOH + 2 M EtOH anode feed. The developed MEA is considered viable for use in emergency power supply units and in power sources for portable electronic equipment. 相似文献
6.
Hafez BahramiAmir Faghri 《Journal of power sources》2011,196(3):1191-1204
An analytical, one-dimensional, steady state model is employed to solve for overpotentials at the catalyst layers along with the liquid water and methanol distributions at the anode, and oxygen transport at the cathode. An iterative method is utilized to calculate the cell temperature at each cell current density. A comprehensive exergy analysis considering all possible species inside the cell during normal operation is presented. The contributions of different types of irreversibilities including overpotentials at the anode and cathode, methanol crossover, contact resistance, and proton conductivity of the membrane are investigated. Of all losses, overpotentials in conjunction with the methanol crossover are considered as the major exergy destruction sources inside the cell during the normal operation. While the exergy losses due to electrochemical reactions are more significant at higher current densities, exergy destruction by methanol crossover at the cathode plays more important role at lower currents. It is also found that the first-law efficiency of a passive direct methanol fuel cell increases as the methanol solution in the tank increases in concentration from 1 M to 3 M. However, this is not the case with the second-law efficiency which is always decreasing as the concentration of the methanol solution in the tank increases. 相似文献
7.
G.K. Surya Prakash Frederick C. KrauseFederico A. Viva S.R. NarayananGeorge A. Olah 《Journal of power sources》2011,196(19):7967-7972
Direct methanol fuel cells using an alkaline anion exchange membrane (AAEM) were prepared, studied, and optimized. The effects of fuel composition and electrode materials were investigated. Membrane electrode assemblies fabricated with Tokuyama® AAEM and commercial noble metal catalysts achieved peak power densities between 25 and 168 mW cm−2 depending on the operating temperature, fuel composition, and electrode materials used. Good electrode wettability at the anode was found to be very important for achieving high power densities. The performance of the best AAEM cells was comparable to Nafion®-based cells under similar conditions. Factors limiting the performance of AAEM MEAs were found to be different from those of Nafion® MEAs. Improved electrode kinetics for methanol oxidation in alkaline electrolyte at Pt-Ru are apparent at low current densities. At high current densities, rapid CO2 production converts the hydroxide anions, necessary for methanol oxidation, to bicarbonate and carbonate: consequently, the membrane and interfacial conductivity are drastically reduced. These phenomena necessitate the use of aqueous potassium hydroxide and wettable electrode materials for efficient hydroxide supply to the anode. However, aqueous hydroxide is not needed at the cathode. Compared to AAEM-based fuel cells, methanol fuel cells based on proton-conducting Nafion® retain better performance at high current densities by providing the benefit of carbon dioxide rejection. 相似文献
8.
Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells 总被引:1,自引:0,他引:1
Quaternized cardo polyetherketone (QPEK-C) membranes for alkaline fuel cells were prepared via chloromethylation, quaternization and alkalization of cardo polyetherketone (PEK-C). The chemical reaction for PEK-C modification was confirmed by nuclear magnetic resonance (1H NMR) and energy-dispersive X-ray spectroscopy (EDAX). The QPEK-C membrane was characterized by X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TG). The ion-exchange content (IEC), water and methanol uptakes, methanol permeability and conductivity of the QPEK-C membranes were measured to evaluate their applicability in alkaline methanol fuel cells. The ionic conductivity of the QPEK-C membrane varied from (1.6 to 5.1) × 10−3 S cm−2 over the temperature range 20-60 °C. The QPEK-C membrane showed excellent methanol resistance. When the concentration of methanol was 4 M, the methanol permeability was less than 10−9 cm2 s−1 at 30 °C. 相似文献
9.
Ligang FengJing Zhang Weiwei CaiLiangliang Wei Xing Changpeng Liu 《Journal of power sources》2011,196(5):2750-2753
A new single passive direct methanol fuel cell (DMFC) supplied with pure methanol is designed, assembled and tested using a pervaporation membrane (PM) to control the methanol transport. The effect of the PM size on the fuel cell performances and the constant current discharge of the fuel cell with one-fueling are studied. The results show that the fuel cell with PM 9 cm2 can yield a maximum power density of about 21 mW cm−2, and a stable performances at a discharge current of 100 mA can last about 45 h. Compared with DMFC supplied with 3 M methanol solution, the energy density provided by this new DMFC has increased about 6 times. 相似文献
10.
This work examines the effect of fuel delivery configuration on the performance of a passive air-breathing direct methanol fuel cell (DMFC). The performance of a single cell is evaluated while the methanol vapour is supplied through a flow channel from a methanol reservoir connected to the anode. The oxygen is supplied from the ambient air to the cathode via natural convection. The fuel cell employs parallel channel configurations or open chamber configurations for methanol vapour feeding. The opening ratio of the flow channel and the flow channel configuration is changed. The opening ratio is defined as that between the area of the inlet port and the area of the outlet port. The chamber configuration is preferred for optimum fuel feeding. The best performance of the fuel cell is obtained when the opening ratio is 0.8 in the chamber configuration. Under these conditions, the peak power is 10.2 mW cm−2 at room temperature and ambient pressure. Consequently, passive DMFCs using methanol vapour require sufficient methanol vapour feeding through the flow channel at the anode for best performance. The mediocre performance of a passive DMFC with a channel configuration is attributed to the low differential pressure and insufficient supply of methanol vapour. 相似文献
11.
Influence of current collectors design on the performance of a silicon-based passive micro direct methanol fuel cell 总被引:1,自引:0,他引:1
J.P. Esquivel J. Santander N. Torres-Herrero I. Gràcia P. Ivanov L. Fonseca C. Cané 《Journal of power sources》2009,194(1):391-396
In this paper, the influence of current collector open ratio on the performance of a passive micro direct methanol fuel cell is evaluated. The device is based on a hybrid approach consisting of two microfabricated silicon current collectors assembled together with a commercial membrane electrode assembly. The characterization was performed by measuring polarization curves of the fuel cell using current collectors with different open ratios on anode and cathode. Results show that the way in which the open ratio of current collectors is combined has an effect not only on the output power but also on the repeatability of polarization curves. This study allows the setting of some general design rules for current collectors of passive micro direct methanol fuel cells. 相似文献
12.
Subramanian Sundarrajan Suleyman I. Allakhverdiev Seeram Ramakrishna 《International Journal of Hydrogen Energy》2012
Micro Direct Methanol Fuel cells (μDMFC) are of considerable interest for both academic laboratories and industries to commercialize, since the energy demand has been increased. Although intensive researches are conducted to understand μDMFC, many challenges still remain to be solved to exploit them for real commercial applications. The pros and cons of various substrate materials used and various designs fabricated so far for fuel delivery are highlighted. One of the existing problems is membrane swelling, which has been reduced by the polymer modification recently. The removal of evolved CO2 gas in the anode and reduction of water flooding in the cathode are accomplished through the advanced materials fabrication is discussed. The important parameters such as fuel, water, air and thermal managements to increase cell performance by material manipulation and design are outlined in this review. A handful of companies are trying μDMFC technology toward real commercial strides. We have also presented an update of the achievements so far by these companies. 相似文献
13.
Matthew E.P. Markiewicz 《Journal of power sources》2010,195(21):7196-7480
Prototype alkaline direct 2-propanol fuel cells (AD2PFCs) using commercial Pt/C electrodes and hardware, and a liquid electrolyte, were constructed and compared to the 3-dimensional current-time-potential profiles for the 3-electrode oxidation of 2-propanol. A substantial current maximum occurs at low potentials and is attributed to a change in the mechanism of 2-propanol oxidation. This mechanism change influenced the stability of the AD2PFC; when the cell was polarized to a lower cell voltage limit of 0.5 V, stable and relatively high power densities are achieved. When the cell was polarized to a lower cell voltage limit of 0 V, unstable and only marginally higher power densities were observed. A maximum power density of 22.3 mW mgPt−1 was achieved, and most of the cell polarization occurred at the cathode. 相似文献
14.
In this paper water and air management systems were developed for a miniature, passive direct methanol fuel cell (DMFC). The membrane thickness, water management system, air management system and gas diffusion electrodes (GDE) were examined to find their effects on the water balance coefficient, fuel utilization efficiency, energy efficiency and power density. Two membranes were used, Nafion® 112 and Nafion® 117. Nafion® 117 cells had greater water balance coefficients, higher fuel utilization efficiency and greater energy efficiency. A passive water management system which utilizes additional cathode gas diffusion layers (GDL) and a passive air management system which makes use of air filters was developed and tested. Water management was improved with the addition of two additional cathode GDLs. The water balance coefficients were increased from −1.930 to 1.021 for a cell using a 3.0 mol kg−1 solution at a current density of 33 mA cm−2. The addition of an air filter further increased the water balance coefficient to 1.131. Maximum power density was improved from 20 mW cm−2 to 25 mW cm−2 for 3.0 mol kg−1 solutions by upgrading from second to third generation GDEs, obtained from E-TEK. There was no significant difference in water management found between second and third generation GDEs. A fuel utilization efficiency of 63% and energy efficiency of 16% was achieved for a 3.0 mol kg−1 solution with a current density of 66 mA cm−2 for third generation GDEs. 相似文献
15.
Passive direct methanol fuel cells (DMFCs) are promising energy sources for portable electronic devices. Different from DMFCs with active fuel feeding systems, passive DMFCs with nearly stagnant fuel and air tend to bear comparatively less power densities. In the aspect of cell performance optimization, there could be significant differences in cell design parameters between active and passive DMFCs. A numerical model that could simulate methanol permeation and the pertinent mixed potential effect in a DMFC was used to help seek for possibilities of optimizing the cell performance of a passive DMFC by studying impacts from variations of cell design. The subjects studied include catalysis of the anode and the cathode, membrane thickness, membrane conductivity, and methanol concentration. In contrast to general understandings on a DMFC with active fuel and reactant gas, our simulation results for a passive DMFC used in this study indicated that the catalysis of the cathode appeared to be the most important parameter. The maximum power density was predicted to improve by 38% with the thickness of the cathodic catalyst layer doubled and by 36% with the catalyst loading doubled. The improvement on cell performance would multiply if we simultaneously adopted the most optimal parameters during the simulation study. 相似文献
16.
This paper reports a micro direct methanol fuel cell (μDMFC) integrated with a heater and a temperature sensor to realize temperature control. A thermal model for the μDMFC is set up based on heat transfer and emission mechanisms. Several patterns of the heater are designed and simulated to produce a more uniform temperature profile. The μDMFC with optimized temperature control system, which has better temperature distribution, is fabricated by using MEMS technologies, assembled with polydimethylsiloxane (PDMS) material and polymethylmethacrylate (PMMA) holders, and characterized in two methods, one with different currents applied and another with different methanol velocities. A μDMFC integrated with the heater of different pattern and another one with aluminum holders, are assembled and tested also to verify the heating effect and temperature maintaining of packaging material. This work would make it possible for a μDMFC to enhance the performance by adjusting to an optimal temperature and employ in extreme environments, such as severe winter, polar region, outer space, desert and deep sea area. 相似文献
17.
Hadis Zarrin Gaopeng Jiang Grace Y.-Y. Lam Michael Fowler Zhongwei Chen 《International Journal of Hydrogen Energy》2014
In this study, a highly ion-conductive and durable porous polymer electrolyte membrane based on ion solvating polybenzimidazole (PBI) was developed for anion exchange membrane fuel cells (AEMFCs). The introduction of porosity can increase the attraction of electrolytic solutions (e.g., potassium hydroxide (KOH)) and ion solvation, which results in the enhancement of PBI's ionic conductivity. The morphology, thermo-physico-chemical properties, ionic conductivity, alkaline stability, and the AEMFC performance of KOH-doped PBI membranes with different porosities were characterized. The ionic conductivity and AEMFC performance of 70 wt.% porous PBI was about 2 times higher than that of the commercially available Fumapem® FAA. All KOH-doped porous PBI membranes maintained their ionic conductivity after accelerated alkaline stability testing over a period of 14 days, while the commercial FAA degraded just after 3 h. The excellent performance and good durability of KOH-doped porous PBI membrane makes it a promising candidate for AEMFCs. 相似文献
18.
Ultrasonic synthesis was investigated as a synthesis method of non-platinum catalysts for alkaline direct methanol fuel cells (alkaline DMFCs) such as 20% mass Pd/C, Au/C, and PdAu/C. Among four kinds of solvents, ethylene glycol was demonstrated to be the optimum solvent for the synthesis of those catalysts. When ethylene glycol was used, the synthesized metal nanoparticles were highly dispersed on carbon particles. The synthesized Pd/C and PdAu/C showed the high oxygen reduction reaction (ORR) activity in alkaline condition (0.5 M NaOH aqueous solution), which was comparable to conventional Pt/C. Moreover, they showed lower methanol oxidation reaction (MOR) activity. Membrane electrode assemblies (MEAs) containing the synthesized Pd/C cathode catalysts and alkaline ion exchange membranes were fabricated and evaluated by single cell tests. They showed high performance that was comparable to MEAs with Pt/C cathode. In addition, it was found that the synthesized Pd/C was relatively tolerant to methanol crossover. 相似文献
19.
Annukka Santasalo-AarnioSami Hietala Taina RauhalaTanja Kallio 《Journal of power sources》2011,196(15):6153-6159
Anion exchange membrane fumasep® FAA-2 was characterized with ex and in situ methods in order to estimate the membranes’ suitability as an electrolyte for an alkaline direct methanol fuel cell (ADMFC). The interactions of this membrane with water, hydroxyl ions and methanol were studied with both calorimetry and NMR and compared with the widely used proton exchange membrane Nafion® 115. The results indicate that FAA-2 has a tighter structure and more homogeneous distribution of ionic groups in contrast to the clustered structure of Nafion, moreover, the diffusion of OH− ions through this membrane is clearly slower compared to water molecules. The permeability of methanol through the FAA-2 membrane was found to be an order of magnitude lower than for Nafion. Fuel cell experiments in 1 mol dm−3 methanol with FAA-2 resulted in OCV of 0.58 V and maximum power density of 0.32 mW cm−2. However, even higher current densities were obtained with highly concentrated fuels. This implies that less water is needed for fuel dilution, thereby decreasing the mass of the fuel cell system. In addition, electrochemical impedance spectroscopy for the ADMFC was used to determine ohmic resistance of the cell facilitating the further membrane development. 相似文献
20.
Luwen Wang Lu Yin Wenli Yang Yuhua Cheng Fei Wen Chaoran Liu Linxi Dong Minghao Wang 《International Journal of Hydrogen Energy》2021,46(2):2594-2605
Passive micro direct methanol fuel cell (μDMFC) which operates based on fuel diffusion is preferred for portable applications for its structural simplicity. In this work, we have systematically investigated multiple variables including the hot-press conditions, current collector channel patterns, current collector open ratios, and their effects on the performance for passive μDMFC by experiments and simulations. Results indicate that vertical stripe pattern (VSP) is preferred for both anodes and cathodes due to the upward reaction products drift by natural convection. Open ratio of 45.6% and 35.8% are found to yield the best performance for anode and cathode, respectively. In addition, the external environmental conditions of vibration frequency, cell orientation, environmental temperature and atmospheric pressure are all discussed in detail in this work. The optimized fabrication, assembly and operation parameters shed light on the design considerations necessary for the wide adaptation of high-performance and durable passive μDMFC for portable applications. 相似文献