首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fabrication and evaluation of a passive, air-breathing, membraneless microfluidic direct methanol fuel cell (ML-μDMFC) using a methanol-tolerant Ag/Pt/CP cathode is presented here. We previously proposed that due to its high tolerance to methanol and the good activity towards the oxygen reduction reaction in alkaline medium, this catalyst could be useful to reduce the methanol crossover effect in direct methanol fuel cells. Therefore, in order to demonstrate it, we designed and fabricated a microfluidic device that allowed the evaluation of the cathode in a high fuel concentration environment, using up to 5 M MeOH in 0.5 M KOH in passive mode. The results confirmed the high tolerance to MeOH and the ORR selectivity of the Ag/Pt/CP cathode, in contrast with a Pt/CP cathode, where performance decreased severely due to the methanol crossover. Employing the methanol-tolerant cathode, it was possible to obtain a power density of 2.4 mW cm−2. Additionally, the durability studies revealed more stability for the ML-μDMFC using the bimetallic catalyst, compared with Pt/CP.  相似文献   

2.
《Journal of power sources》2006,162(2):1232-1235
A vapor fed passive direct methanol fuel cell (DMFC) is proposed to achieve a high energy density by using pure methanol for mobile applications. Vapor is provided from a methanol reservoir to the membrane electrode assembly (MEA) through a vaporizer, barrier and buffer layer. With a composite membrane of lower methanol cross-over and diffusion layers of hydrophilic nanomaterials, the humidity of the MEA was enhanced by water back diffusion from the cathode to the anode through the membrane in these passive DMFCs. The humidity in the MEA due to water back diffusion results in the supply of water for an anodic electrochemical reaction with a low membrane resistance. The vapor fed passive DMFC with humidified MEA maintained 20–25 mW cm−2 power density for 360 h and performed with a 70% higher fuel efficiency and 1.5 times higher energy density when compared with a liquid fed passive DMFC.  相似文献   

3.
The conventional electrodes of direct methanol fuel cells (DMFCs) usually encounter a problem that the catalysts sink into the diffusion layer after a period of operation, causing a lowered catalyst utilization and degraded cell performance. Aiming to alleviate this problem, in this work a novel anode electrode structure is proposed, in which a microporous layer containing Nafion polymer is added between the catalyst layer and the microporous layer with PTFE. The presence of the Nafion-contained layer can expand the three-phase interface region of the electrochemical reactions and improve the utilization of the catalyst. The single cell test showed that the peak power densities of the novel membrane electrode assembly (MEA) fed with 0.5 M and 2 M methanol solutions reached 38.35 mW cm−2 and 101.82 mW cm−2, which increased by 100.42% and 15.27% compared with those of conventional single microporous layer. Electrochemical impedance spectroscopy (EIS) measurements indicated the charge transfer resistance of the conventional MEA structure was increased by 303.78%, while the new one was decreased by 47.91% after continuously operating for 48 h. The anode electrochemical active surface area (ECSA) values of the novel MEA and the conventional MEA were 52.6 m2 g-1 and 44.3 m2 g-1. These experimental results showed that the performance of the double microporous layer MEA was higher than that of the conventional MEA. This new microporous layer structure is promising to be used in fuel cells to improve cell performance and alleviate performance degradation after long-term operating.  相似文献   

4.
Protonated polyaniline (PANI) is directly polymerized on Nafion 117 (N117), forming a composite membrane, to act as a methanol-blocking layer to reduce the methanol crossover in the direct methanol fuel cell (DMFC), which is beneficial for the DMFC operating at high methanol concentration. The PANI layer grown on the N117 with a thickness of 100 nm has an electrical conductivity of 13.2 S cm−1. The methanol permeability of the PANI/N117 membrane is reduced to 59% of that of the N117 alone, suggesting that the PANI/N117 can effectively reduce the methanol crossover in the DMFC. Comparison of membrane-electrode-assemblies (MEA) using the conventional N117 and the newly developed PANI/N117 composite shows that the PANI/N117-based MEA outputs higher power at high methanol concentration, while the output power of the N117-based MEA is reduced at high methanol concentration due to the methanol crossover. The maximum power density of the PANI/N117-based MEA at 60 °C is 70 mW cm−2 at 6 M methanol solution, which is double the N117-based MEA at the same methanol concentration. The resistance of PANI/N117 composite membrane is reduced at elevated methanol concentration, due to the hydrogen bonding between methanol and PANI pushes the polymer chains apart. It is concluded that the PANI/N117-based MEA performs well at elevated methanol concentration, which is suitable for the long-term operation of the DMFC.  相似文献   

5.
According to the conventional MEA test, methanol and water crossover are the main factors to determine performance of a passive DMFC. Thus, to ensure the high cell performance of a passive DMFC using high concentration methanol of 50–95 vol%, the MEA in this study introduces the barrier layer to limit the crossover of high concentration methanol, a hydrophobic layer to reduce water crossover, and a hydrophilic layer to enhance the water recovery from the cathode to the anode. The functional layers of the MEA have the effect of improving the performance of the passive DMFC by decreasing the methanol and water crossover. In spite of the operation with 95 vol% methanol, the MEA with multi-layer electrodes for high concentration methanol DMFCs shows a maximum power density of 35.1 mW cm−2 and maintains a high power density of 30 mW cm−2 (0.405 V) under constant current operation.  相似文献   

6.
This report details development of an air-breathing direct methanol alkaline fuel cell with an anion-exchange membrane. The commercially available anion-exchange membrane used in the fuel cell was first electrochemically characterized by measuring its ionic conductivity, and showed a promising result of 1.0 × 10−1 S cm−1 in a 5 M KOH solution. A laboratory-scale direct methanol fuel cell using the alkaline membrane was then assembled to demonstrate the feasibility of the system. A high open-circuit voltage of 700 mV was obtained for the air-breathing alkaline membrane direct methanol fuel cell (AMDMFC), a result about 100 mV higher than that obtained for the air-breathing DMFC using a proton exchange membrane. Polarization measurement revealed that the power densities for the AMDMFC are strongly dependent on the methanol concentration and reach a maximum value of 12.8 mW cm−2 at 0.3 V with a 7 M methanol concentration. A durability test for the air-breathing AMDMFC was performed in chronoamperometry mode (0.3 V), and the decay rate was approximately 0.056 mA cm−2 h−1 over 160 h of operation. The cell area resistance for the air-breathing AMDMFC was around 1.3 Ω cm2 in the open-circuit voltage (OCV) mode and then is stably supported around 0.8 Ω cm2 in constant voltage (0.3 V) mode.  相似文献   

7.
One of important factors determining the lifetime of proton exchange membrane fuel cells (PEMFCs) is degradation and failure of membrane electrode assembly (MEA). The lack of effective mitigation methods is largely due to the currently limited understanding of the degradation mechanisms for fuel cell MEAs. This study adopted the accelerating degradation technique to analyze durability of MEA using drive cycle test protocol developed by Chinese NERC Fuel Cell & Hydrogen Technology to assess the long-term durability of fuel cells for vehicular application. During 900 h durability test of the MEA, the polarization curve, cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) were performed as diagnostics during and on completion the test. The experimental results show that the performance degradation rate of the cell is about 70 μV h−1 at the operating current density of 500 mA cm−2, failure of the proton exchange membrane is the decisive factor leading to the failure of the MEA. And the damage of the micro-structural of catalytic layer, crucial for electrochemical reaction, is the decisive factor for the performance degradation.  相似文献   

8.
Various silica particles were adopted as catalyst supports, and silica-supported PtRu catalysts were evaluated as catalysts for the anode of direct methanol fuel cells at methanol concentrations of 1–10 M through single cell tests. Compared to a carbon black supported Pt–Ru catalysts, the silica-supported Pt–Ru catalysts exhibited higher performance in MEA, especially with high concentration over 3 M, and the maximum power density reached to 90 mW cm−2 and 60 mW cm−2 with 5 M and 10 M, respectively, which were 1.5 and 3 times higher than the reference carbon black supported catalysts. It was found that the silica particles as a catalyst support have a significant effect on reduction of methanol crossover and control of fuel feeding. Such a high performance in the operation with high concentrations was confirmed in the long-term durability test.  相似文献   

9.
《Journal of power sources》2006,161(1):282-289
A novel MEA is fabricated to improve the performance of air-breathing direct methanol fuel cells. A diffusion barrier on the anode side is designed to control methanol transport to the anode catalyst layer and thus suppressing the methanol crossover. A catalyst coated membrane with a hydrophobic gas diffusion layer on the cathode side is employed to improve the oxygen mass transport. It is observed that the maximum power density of the advanced DMFC with 2 M methanol solution achieves 65 mW cm−2 at 60 °C. The value is nearly two times more than that of a commercial MEA. At 40 °C, the power densities operating with 1 and 2 M methanol solutions are over 20 mW cm−2 with a cell potential at 0.3 V.  相似文献   

10.
Aliphatic alcohol mainly, ethanol, methanol and their mixture were subjected to electrooxidation study using cyclic voltammetry (CV) technique in a three electrodes half cell assembly (PGSTAT204, Autolab Netherlands). A single cell set up of direct alcohol alkaline fuel cell (DAAFC) was fabricated using laboratory synthesized alkaline membrane to validate the CV results. The DAAFC conditions were kept similar as that of CV experiments. The anode and cathode electrocatalysts were Pt-Ru (30%:15% by wt.)/Carbon black (C) (Alfa Aesar, USA) and Pt (40% by wt.)/High Surface Area Carbon (CHSA) (Alfa Aesar, USA) respectively. The CV and single cell experiments were performed at a temperature of 30 °C. The anode electrocatalyst was in the range of 0.5 mg/cm2 to 1.5 mg/cm2 for half cell CV analysis. The cell voltage and current density data were recorded for different concentrations of fuel (ethanol or methanol) and their mixture mixed with different concentration of KOH as electrolyte. The optimum electrocatalyst loading in half cell study was found to be 1 mg/cm2 of Pt-Ru/C irrespective of fuel used. The single cell was tested using optimum anode loading of 1 mg/cm2 of Pt-Ru/C which was found in CV experiment. Cathode loading was kept similar, in the order of 1 mg/cm2 Pt/CHSA. In single cell experiment, the maximum open circuit voltage (OCV) of 0.75 V and power density of 3.57 mW/cm2 at a current density of 17.76 mA/cm2 were obtained for the fuel of 2 M ethanol mixed with 1 M KOH. Whereas, maximum OCV of 0.62 V and power density of 7.10 mW/cm2 at a current density of 23.53 mA/cm2 were obtained for the fuel of 3 M methanol mixed with 6 M KOH. The mixture of methanol and ethanol (1:3) mixed with 0.5 M KOH produced the maximum OCV of 0.66 V and power density of 1.98 mW/cm2 at a current density of 11.54 mA/cm2.  相似文献   

11.
A novel polymer-inorganic composite electrolyte for direct methanol alkaline fuel cells (DMAFCs) is prepared by physically blending fumed silica (FS) with polyvinyl alcohol (PVA) to suppress the methanol permeability of the resulting nano-composites. Methanol permeability is suppressed in the PVA/FS composite when comparing with the pristine PVA membrane. The PVA membrane and the PVA/FS composite are immersed in KOH solutions to prepare the hydroxide-conducting electrolytes. The ionic conductivity, cell voltage and power density are studied as a function of temperature, FS content, KOH concentration and methanol concentration. The PVA/FS/KOH electrolyte exhibits higher ionic conductivity and higher peak power density than the PVA/KOH electrolyte. In addition, the concentration of KOH in the PVA/FS/KOH electrolytes plays a major role in achieving higher ionic conductivity and improves fuel cell performance. An open-circuit voltage of 1.0 V and a maximum power density of 39 mW cm−2 are achieved using the PVA/(20%)FS/KOH electrolyte at 60 °C with 2 M methanol and 6 M KOH as the anode fuel feed and with humidified oxygen at the cathode. The resulting maximum power density is higher than the literature data reported for DMAFCs prepared with hydroxide-conducting electrolytes and anion-exchange membranes. The long-term cell performance is sustained during a 100-h continuous operation.  相似文献   

12.
A sulfonated poly(ether ether ketone) containing hydroxyl groups (HO-SPEEK) has been synthesized for investigation as the ionomer in cathode of direct methanol fuel cells. Na salt-formed HO-SPEEK shows excellent solubility in some aqueous solutions of monohydric alcohol and can be successfully self-cross-linked in-situ during the hot-pressing process of membrane-electrode assembly (MEA) fabrication. The resulted cross-linked HO-SPEEK displays improved stability and mechanical strength. MEA incorporating the HO-SPEEK as both membrane and ionomer shows excellent peak power density of 29.0 mW cm−2 at 25 °C with 4 M methanol, which is comparable to the Nafion reference MEA (31.8 mW cm−2) and 2.9-fold higher than that of the MEA prepared from catalyst ink that contained dimethyl sulfoxide (10.3 mW cm−2). Thanks to the avoidance of high-boiling point solvent, the resulted HO-SPEEK-based cathode is loosened with many large pores for reactant gas and product transportation. These results demonstrate that water-alcohol dispersible and cross-linkable sulfonated hydrocarbons hold technological promise as ionomer for electrode.  相似文献   

13.
A polymer electrolyte membrane for alkaline direct ethanol fuel cell (ADEFC) was prepared by dipping Nafion112 membrane into KOH solution for some time at room temperature. The obtained membrane (Nafion112/KOH) exhibited higher mechanical properties and thermal stability than Nafion112 membrane. The ionic conductivity of Nafion112/KOH in 1 M, 2 M and 6 M KOH solutions was 0.011 S/cm, 0.026 S/cm, 0.032 S/cm, respectively, depending on internal OH concentration and the volume fraction of the internal aqueous phase. Single cell performance suggested that active ADEFC with Nafion112/KOH membrane can deliver a peak power density of 58.87 mW/cm2 at 90 °C, meanwhile, it can stably run for at least 12 h above 0.2 V. On the other hand, Pt-free air breathing ADEFC with Nafion112/KOH can output a peak power density of 11.5 mW/cm2 at 60 °C, and the corresponding lifetime was as long as 473 h above 0.3 V.  相似文献   

14.
The influence of optimal ultraviolet irradiation of Nafion membranes in enhancing proton conductivity and performance of passive micro-direct methanol fuel cells with silicon micro-flow channels is investigated for the first time. Initially, Nafion membranes are irradiated with different doses of ultraviolet radiation ranging within 0–400 mJ cm−2 and their water uptake, swelling-ratios, porosity, and proton conductivities are measured using standard procedure. Results show that there is an enhancement in proton conductivity with an optimal dose of 198 mJ cm−2 ultraviolet radiation. This enhancement is due to optimum photo-crosslinking of –SO3H species resulting in maximum pore-size which facilitates enhanced proton-hopping from one –SO3H site to another in the hydrophilic channel. Nafion membranes with three different thicknesses (50 μm, 90 μm and 183 μm) are irradiated with ultraviolet radiation with 198 mJ cm−2 dose and passive micro-direct methanol fuel cells are assembled with irradiated Nafion proton exchange membranes. The polarization plots are obtained for the assembled devices. Results show an enhancement of power density of devices nearly by a factor of 1.2–1.5 with optimally irradiated membranes indicating that optimum dose of ultraviolet irradiation of Nafion membranes is an effective technique for power enhancement of proton exchange membrane fuel cells which use fuels like methanol, ethanol and hydrogen.  相似文献   

15.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

16.
A novel membrane electrode assembly (MEA) is described that utilizes a double microporous layer (MPL) structure in the cathode of a passive direct methanol fuel cell (DMFC). The double MPL cathode uses Ketjen Black carbon as an inner-MPL and Vulcan XC-72R carbon as an outer-MPL. Experimental results indicate that this double MPL structure at the cathode provides not only a higher oxygen transfer rate, but enables more effective back diffusion of water; thus, leading to an improved power density and stability of the passive DMFC. The maximum power density of an MEA with a double MPL cathode was observed to be ca. 33.0 mW cm−2, which is found to be a substantial improvement over that for a passive DMFC with a conventional MEA. A. C. impedance analysis suggests that the increased performance of a DMFC with the double MPL cathode might be attributable to a decreased charge transfer resistance for the cathode oxygen reduction reaction.  相似文献   

17.
A conceptual design and statistical overview about passive direct methanol fuel cells that have been fabricated from 2002 to 2013, is performed [1–70]. The major components of passive DMFCs such as: active area, type of Nafion, catalyst loading on the anode and cathode side, characteristics and designs of current collectors (CC), and also the optimum methanol concentration which resulted in the best performance are categorized and studied statistically and individually. Finally, the best combination for the design and fabrication of a reliable passive DMFC is recommended. Obtained results indicated that a MEA with 4 cm2 active area, Nafion 117 and 4 mg/cm2 Pt/Ru at the anode and 2 mg/cm2 Pt black at the cathode (or 4 mg/cm2 Pt/Ru at the anode – 4 mg/cm2 Pt black at the cathode) as the catalyst loading, which is sandwiched between two stainless steel perforated current collectors that are coated by Pt (or Gold) could be a reliable design for a passive direct methanol single cell.  相似文献   

18.
We report here the performance of a metal-based integrated composite membrane electrode assembly (IC-MEA) in direct methanol fuel cell (DMFC). The IC-MEA integrates the multi-functions of a conventional MEA, gas diffusion layer (GDL) and current collector. It was fabricated by impregnating Nafion electrolyte into a sandwiched structure containing expanding-Polytetrafluoroethylene (e-PTFE) and porous titanium sheets and subsequently coating with catalyst layer and microporous layer (MPL). While operating with air and 2 M methanol under ambient pressure, the IC-MEA in DMFC can yield a maximum power density of 19 mW cm−2 at 26 °C, higher than a in-house made Nafion 115 MEA under the same working conditions. The IC-MEAs has been successfully applied to planar multi-cell stacks.  相似文献   

19.
Selective sulfonated poly(imide)s with high proton conductivity and low methanol permeability were tested for their performance as proton exchange membranes in direct methanol fuel cells (DMFC). The proton to methanol transport selectivity of the poly(imide) membranes correlated well with the self-diffusion coefficients of water in the membranes as determined by pulsed-field gradient nuclear magnetic resonance. The poly(imide) membranes showed improved fuel cell device performance, however high interfacial resistance between the membranes and electrodes decreased the membrane electrode assembly (MEA) conductivity to methanol crossover selectivity, likely due to the use of NAFION®-based electrodes. The maximum power densities of SPI-50, SPI-75, and NR-212 based MEAs were 75, 72, and 67 mW cm−2, respectively, with a methanol feed concentration of 2 M at a cell temperature of 60 °C.  相似文献   

20.
In a high-concentration direct methanol fuel cell (HC-DMFC), the methanol crossover is typically decreased to an acceptable level by two main mechanisms: high methanol transport resistance between the anode reservoir and the membrane electrode assembly (MEA), and high water back flow from the cathode to the anode. Based on the semi-passive HC-DMFC fabricated in this work, the effects of methanol barrier layer (MBL) thickness and electrolyte membrane thickness on cell performance, methanol and water crossover, and fuel efficiency have been studied. The results showed that a thicker MBL could significantly decrease the methanol and water crossover by increasing the mass transport resistance between the anode reservoir and the MEA, while a thinner Nafion® membrane could also significantly decrease the methanol and water crossover by enhancing the water back flow from the cathode through the electrolyte membrane to the anode. Using Nafion® 212 as the electrolyte membrane, and a 6.4 mm porous PTFE plate as the MBL, a semi-passive HC-DMFC operating at 70 °C produced the maximum power density of 115.8 mW cm−2 when 20 M methanol solution was fed as the fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号