首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-energy density and low cost magnesium nanoparticles (Mg NPs)-based material are being sought to meet increasing capable of hydrogen (H2) storage demand. Here, a kind of air-stable Mg NPs supported on porous structured multi-walled carbon tubes-polymethyl methacrylate (MWCNTs-PMMA) template is prepared owing to reversible well-distributed, dispersed and small-sized Mg/MgH2 NPs. The aim is to improve the H2 storage capacity, hydrogen sorption kinetics and thermodynamics of nano Mg-based system without using catalyst. The organic Mg precursor was directly in-situ reduced to metallic Mg NPs in MWCNTs-PMMA template by lithium naphthalide. The size distribution of reduced Mg nanoparticles is around 3.6 ± 0.2 nm, confirmed by XRD and TEM analyses, which is due to the strong interaction between Mg NPs and MWCNTs-PMMA via PMMA binding Mg2+, as well as the confinement of porous template hindered the growth and agglomeration of Mg NPs. Moreover, except H2, O2 and H2O molecules can't infiltrate the porous structure of MWCNTs-PMMA resulted in the presence of air stable Mg NPs in the MWCNTs-PMMA. The work provides a new scope to prepare nano metal-based composite for H2 storage.  相似文献   

2.
A metal-organic framework based on Ni (II) as metal ion and trimasic acid (TMA) as organic linker was synthesized and introduced into MgH2 to prepare a Mg-(TMA-Ni MOF)-H composite through ball-milling. The microstructures, phase changes and hydrogen storage behaviors of the composite were systematically studied. It can be found that Ni ion in TMA-Ni MOF is attracted by Mg to form nano-sized Mg2Ni/Mg2NiH4 after de/rehydrogenation. The hydriding and dehydriding enthalpies of the Mg-MOF-H composite are evaluated to be −74.3 and 78.7 kJ mol−1 H2, respectively, which means that the thermodynamics of Mg remains unchanged. The absorption kinetics of the Mg-MOF-H composite is improved by showing an activation energy of 51.2 kJ mol−1 H2. The onset desorption temperature of the composite is 167.8 K lower than that of the pure MgH2 at the heating rate of 10 K/min. Such a significant enhancement on the sorption kinetic properties of the composite is attributed to the catalytic effects of the nanoscale Mg2Ni/Mg2NiH4 derived from TMA-Ni MOF by providing gateways for hydrogen diffusion during re/dehydrogenation processes.  相似文献   

3.
We present a density functional theory (DFT) study on the hydrogen storage capacity of (5,5) arm-chair single walled carbon nanotubes (SWCNTs) functionalized with magnesium hydride (MgH2). Being lightweight and rich in hydrogen, MgH2 adsorbs H2 molecules in the vicinity of carbon nanotubes. The H2 molecules are adsorbed dissociatively on SWCNT + MgH2 complex. The H-H distance gets increased by more than ten times of the initial bond length 0.74 Å of the H2 molecule. The hydrogen storage capacity of three configurations namely C1MgH2, C5MgH2 and C10MgH2 is reported. The density of states is computed for all the systems. The average binding energies of C5MgH2 and C10MgH2 when H2 molecule is adsorbed are 1.86 eV/H2 and 1.96 eV/H2, which are approximately equal. Thus, increasing the number of MgH2 molecule does not vary the binding energy of H2 adsorption. The corresponding temperature, in which desorption will take place, is 2285 K and 2457 K for C5MgH2 and C10MgH2 systems respectively, which are much above the room temperature.  相似文献   

4.
The Mg-based hydrogen storage alloy with multiple platforms is successfully prepared by ball milling Co powder and Mg-RE-Ni precursor alloy, and its hydrogen storage behavior was investigated in detail by XRD, EDS, TEM, PCI, and DSC methods. The ball-milled alloy consists of the main phase Mg, the catalytic phases Mg2Ni, Mg2Co as well as a small amount of Mg12Ce, and convert into the MgH2–CeH2.73-Mg2NiH4–Mg2CoH5 composite after hydrogenation. The composite has three PCI platforms corresponding to the reversible de/hydrogenation reaction of Mg/MgH2, Mg2Ni/Mg2NiH4 and Mg6Co2H11/Mg2CoH5. Among them, the transformation between Mg2Ni and Mg2NiH4 triggers the “spill-over” effect which promote the decomposition of MgH2 phases and enhances the hydrogen desorption kinetics. Meanwhile, the conversion of the Mg6Co2H11 to Mg2CoH5 phase induces the “chain reaction” effect, which leads to preferential nucleation of Mg phase and improves the hydrogen absorption kinetics. Therefore, the Mg-RE-Ni-Co alloy has a double improvement on hydrogen absorption and desorption kinetics. Concretely, the alloy has an optimal hydrogen absorption temperature of 200 °C, at which it can absorb 5.5 wt. % H2 within 40 s. Under the conditions, the capacity of absorption almost reaches the maximum reversible value (about 5.6 wt. %). Besides, the alloy has a dehydrogenation activation energy of 67.9 kJ/mol and can desorb 5.0 wt. % H2 within 60 min at the temperature of 260 °C.  相似文献   

5.
The morphology, crystal structure, hydrogen content, and sorption properties of magnesium hydride thin films prepared by reactive plasma-assisted sputter deposition were investigated. Few micrometers-thick films were deposited on Si and SiO2/Si substrates, at low pressure (0.4 Pa) and close to room temperature using (Ar + H2) plasma with H2 fraction in the range 15–70%. The microstructure and hydrogen content of the films are closely related to the surface temperature and hydrogen partial pressure during the deposition process. Operating in pulsed-plasma mode allows the hydrogenation rate of the MgH2 thin film to top up to 98%, thereby producing a nearly fully hydrogenated film in a single-step process. The positive effect of the pulsed process is explained by the significant decrease in the whole energy flux incident on the surface and the favourable impact of the transient process for the rearrangement/relaxation of the materials. As for the hydrogen storage properties, desorption experiments and cycling of the films show the destabilizing effect of Mg2Si formation at the interface between the film and the Si substrate resulting in a drastically increased desorption kinetics compared to less reactive SiO2 substrate. However, the reaction is regrettably not reversible upon hydrogenation and the hydrogen storage capacity is consequently reduced upon cycling. Nevertheless, the deposition process carried out on inert substrates would offer true potential for reversible storage. Finally, our experimental results, which show the possibility to preferentially grow the metastable medium pressure γ-MgH2 phase, open possibilities for the synthesis of more complex metastable phases such as magnesium-based ternary compounds.  相似文献   

6.
Both kinetics and thermodynamics properties of MgH2 are significantly improved by the addition of Mg(AlH4)2. The as-prepared MgH2–Mg(AlH4)2 composite displays superior hydrogen desorption performances, which starts to desorb hydrogen at 90 °C, and a total amount of 7.76 wt% hydrogen is released during its decomposition. The enthalpy of MgH2-relevant desorption is 32.3 kJ mol−1 H2 in the MgH2–Mg(AlH4)2 composite, obviously decreased than that of pure MgH2. The dehydriding mechanism of MgH2–Mg(AlH4)2 composite is systematically investigated by using x-ray diffraction and differential scanning calorimetry. Firstly, Mg(AlH4)2 decomposes and produces active Al. Subsequently, the in-situ formed Al reacts with MgH2 and forms Mg–Al alloys. For its reversibility, the products are fully re-hydrogenated into MgH2 and Al, under 3 MPa H2 pressure at 300 °C for 5 h.  相似文献   

7.
Carbon-based materials have been proposed as an ideal medium to reduce the reaction energy barriers and improve the (de)hydrogenation kinetics of magnesium-based hydrogen storage material (MgH2) in term of their excellent dispersion. However, tedious preparation process and uneven distribution of carbon restrict the application. Therefore, in this paper, we cover MgH2 by in-situ formed amorphous carbon via a facile approach of co-sintering Mg with fluorene followed by hydriding combustion and ball milling processes, named as MgH2-carbonization product of fluorene (MgH2-CPF). As a result, the MgH2-CPF composite prepared at 823 K initially dehydrogenates at 557 K, 94 K lower than the as-milled MgH2 (651 K). Meanwhile, the composite can release 5.67 wt% H2 within 1000 s at 623 K. Even at a lower temperature of 423 K, the MgH2-CPF composite still reabsorbs 5.62 wt% H2 within 3600 s, while the as-milled Mg can hardly absorb hydrogen under a same condition. Furthermore, by addition of CPF, the apparent activation energy of the system is decreased from 161.2 kJ/mol to 87.2 kJ/mol. Our finding suggests that the carbon layer can keep the MgH2 from aggregation, promote hydrogen transport and improve the efficiency of hydrogen absorption and desorption.  相似文献   

8.
Magnesium borohydride (Mg(BH4)2) is a promising material for hydrogen storage because of its high gravimetric storage density (15.0 mass%). We intended to synthesize Mg(BH4)2 by decomposition reaction of LiBH4 with MgCl2 by heat treatment without using a solvent, where the product consists of LiCl and a compound of magnesium, boron and hydrogen. Hydrogen desorption temperature of the product is approximately 100 K lower than that of LiBH4 and the decomposition consists of a two-step reaction. The products of the 1st and 2nd decomposition reactions are MgH2 and Mg, respectively. This result indicates the following two-step reaction (1st reaction: Mg(BH4)2→MgH2+2B+3H2, 2nd reaction: MgH2→Mg+H2). The first decomposition peak is dominant and is around 563 K. The 2nd decomposition occurs at the temperature greater than 590 K.  相似文献   

9.
Magnesium hydroxide (MgH2) has excellent reversibility and high capacity, and is one of the most promising materials for hydrogen storage in practical applications. However, it suffers from high dehydrogenation temperature and slow sorption kinetics. Rare earth hydrides and transition metals can both significantly improve the de/hydrogenation kinetics of MgH2. In this work, MgH2–Mg2NiH4–CeH2.73 is in-situ synthesized by introducing Ni@CeO2 into MgH2. The unique coating structure of Ni@CeO2 facilitates homogeneous distribution of synergetic CeH2.73 and Mg2NiH4 catalytic sites in subsequent ball milling process. The as-fabricated composite MgH2-10 wt% Ni@CeO2 powders possess superior hydrogenation/dehydrogenation characteristics, absorbing 4.1 wt% hydrogen within 60 min at 100 °C and releasing 5.44 wt% H2 within 10 min at 350 °C. The apparent activation energy of MgH2-10 wt% Ni@CeO2 is determined to be 84.8 kJ/mol and it has favorable hydrogen cycling stability with almost no decay in capacity after 10 cycles.  相似文献   

10.
Mg can store up to ∼7 wt.% hydrogen and has great potential as light-weight and low cost hydrogen storage materials. However hydrogen sorption in Mg typically requires ∼573 K, whereas the target operation temperature of fuel cells in automobiles is ∼373 K or less. Here we demonstrate that stress-induced orthorhombic Mg hydride (O-MgH2) is thermodynamically destabilized at ∼ 373 K or lower. Such drastic destabilization arises from large tensile stress in single layer O-MgH2 bonded to rigid substrate, or compressive stress due to large volume change incompatibility in Mg/Nb multilayers. Hydrogen (H2) desorption occurred at room temperature in O-MgH2 10 nm/O-NbH 10 nm multilayers. Ab initio calculations show that constraints imposed by the thin-film environment can significantly reduce hydride formation enthalpy, verifying the experimental observations. These studies provide key insight on the mechanisms that can significantly destabilize Mg hydride and other type of metal hydrides.  相似文献   

11.
The hydrogen absorption and desorption properties of a MgH2 – 1 mol.% Nb(V) ethoxide mixture are reported. The material was prepared by hand mixing the additive with previously ball-milled MgH2. Nb ethoxide reacts with MgH2 during heating, releasing C2H6 and H2, and producing MgO and Nb or Nb hydride. Hydriding and dehydriding are greatly enhanced by the use of the alkoxide. At 250 °C the material with Nb takes up 1.8 wt% in 30 s compared with 0.1 wt% of pure Mg, and releases 4.2 wt% in 30 min, whereas MgH2 without Nb does not appreciably desorb hydrogen. The absorption and desorption activation energies are reduced from 153 kJ/mol H2 to 94 kJ/mol H2, and from 176 kJ/mol H2 to 75 kJ/mol H2, respectively. The hydrogen sorption properties remain stable after 10 cycles at 300 °C. The kinetic improvement is attributed to the fine distribution of amorphous/nanometric NbHx achieved by the dispersion of the liquid additive.  相似文献   

12.
This paper reports the catalytic effects of mischmetal (Mm) and mischmetal oxide (Mm-oxide) on improving the dehydrogenation and rehydrogenation behaviour of magnesium hydride (MgH2). It has been found that 5 wt.% is the optimum catalyst (Mm/Mm-oxide) concentration for MgH2. The Mm and Mm-oxide catalyzed MgH2 exhibits hydrogen desorption at significantly lower temperature and also fast rehydrogenation kinetics compared to ball-milled MgH2 under identical conditions of temperature and pressure. The onset desorption temperature for MgH2 catalyzed with Mm and Mm-oxide are 323 °C and 305 °C, respectively. Whereas the onset desorption temperature for the ball-milled MgH2 is 381 °C. Thus, there is a lowering of onset desorption temperature by 58 °C for Mm and by 76 °C for Mm-oxide. The dehydrogenation activation energy of Mm-oxide catalyzed MgH2 is 66 kJ/mol. It is 35 kJ/mol lower than ball-milled MgH2. Additionally, the Mm-oxide catalyzed dehydrogenated Mg exhibits faster rehydrogenation kinetics. It has been noticed that in the first 10 min, the Mm-oxide catalyzed Mg (dehydrogenated MgH2) has absorbed up to 4.75 wt.% H2 at 315 °C under 15 atmosphere hydrogen pressure. The activation energy determined for the rehydrogenation of Mm-oxide catalyzed Mg is ∼62 kJ/mol, whereas that for the ball-milled Mg alone is ∼91 kJ/mol. Thus, there is a decrease in absorption activation energy by ∼29 kJ/mol for the Mm-oxide catalyzed Mg. In addition, Mm-oxide is the native mixture of CeO2 and La2O3 which makes the duo a better catalyst than CeO2, which is known to be an effective catalyst for MgH2. This takes place due to the synergistic effect of CeO2 and La2O3. It can thus be said that Mm-oxide is an effective catalyst for improving the hydrogen sorption behaviour of MgH2.  相似文献   

13.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

14.
Reversible hydrogen storage in MgH2 under mild conditions is a promising way for the realization of “Hydrogen Economy”, in which the development of cheap and highly efficient catalysts is the major challenge. Herein, A two-dimensional layered Fe is prepared via a facile wet-chemical ball milling method and has been confirmed to greatly enhance the hydrogen storage performance of MgH2. Minor addition of 5 wt% Fe nanosheets to MgH2 decreases the onset desorption temperature to 182.1 °C and enables a quick release of 5.44 wt% H2 within 10 min at 300 °C. Besides, the dehydrogenated sample takes up 6 wt% H2 in 10 min under a hydrogen pressure of 3.2 MPa at 200 °C. With the doping of Fe nanosheets, the apparent activation energy of the dehydrogenation reaction for MgH2 is reduced to 40.7 ± 1.0 kJ mol−1. Further ab initio calculations reveal that the presence of Fe extends the Mg–H bond length and reduces its bond strength. We believe that this work would shed light on designing plain metal for catalysis in the area of hydrogen storage and other energy-related issues.  相似文献   

15.
Mg-based materials have been widely researched for hydrogen storage development due to the low price of Mg, abundant resources of Mg element in the earth's crust and the high hydrogen capacity (ca. 7.7 mass% for MgH2). However, the challenges of poor kinetics, unsuitable thermodynamic properties, large volume change during hydrogen sorption cycles have greatly hindered the practical applications. Here in this review, our recent achievements of a new research direction on Mg-based metastable nano alloys with a Body-Centered Cubic (BCC) lattice structure are summarized. Different with other metals/alloys/complex hydrides etc. which involve significant lattice structure and volume change from hydrogen introduction and release, one unique nature of this kind of metastable nano alloys is that the lattice structure does not change obviously with hydrogen absorption and desorption, which brings interesting phenomenon in microstructure properties and hydrogen storage performances (outstanding kinetics at low temperature and super high hydrogen capacity potential). The synthesis results, morphology and microstructure characterization, formation evolution mechanisms, hydrogen storage performances and geometrical effect of these metastable nano alloys are discussed. The nanostructure, fresh surface from ball milling process and fast hydrogen diffusion rate in BCC lattice structure, as well as the unique nature of maintaining original BCC metal lattice during hydrogenation result in outstanding hydrogen storage performances for Mg-based metastable nano alloys. This work may open a new sight to develop new generation hydrogen storage materials.  相似文献   

16.
Mg-based materials are very promising candidates for hydrogen storage. In this paper, the graphene supported Ni was introduced to the Mg90Al10 system by hydrogenation synthesis (HS) and mechanical milling (MM). The 80 wt%Ni@Gn catalyst was synthesized by a facile chemical reduction method. The microstructures of the catalyst and composite show that Ni nanoparticles are well supported on the surface of graphene and they are dispersed uniformly on the surface of MgH2 particles. After heating to 450 °C and holding at 340 °C for 2 h subsequently under 2.0 MPa hydrogen pressure, all the samples are almost completely hydrogenated. According to the temperature programmed desorption test, the Mg90Al10-8(80 wt%Ni@Gn) composite could desorb 5.85 wt% H2 which comes up to 96% of the theoretical hydrogen storage capacity. Moreover, it shows the optimal hydriding/dehydriding performance, absorbing 5.11 wt% hydrogen within 400 s at 523 K, and desorbing 5.81 wt% hydrogen within 1800 s at 573 K.  相似文献   

17.
MgH2, MgH2–TiH2 nanocomposites and their deuterated analogues have been obtained by reactive ball milling and their kinetic and cycling hydrogenation properties have been analysed by isotope measurements and high-pressure differential scanning calorimetry (HP-DSC). Kinetics of material synthesis depends on both Ti-content and the isotopic nature of the gas. For pure Mg, the synthesis is controlled by isotope diffusion in Mg and therefore MgH2 forms faster than MgD2. For the MgH2–TiH2 nanocomposites, the synthesis is controlled by the efficiency of milling. Kinetics of reversible hydrogen/deuterium sorption in nanocomposites have been studied at 548 K. The rate limiting step is isotope diffusion for absorption and Mg/MgH2 interface displacement for desorption. HP-DSC measurements demonstrate that the TiH2 phase acts as a gateway for hydrogen sorption even in presence of MgO and provides abundant nucleation sites for Mg and MgH2 phases. The 0.7MgH2–0.3TiH2 nanocomposite exhibits steady hydrogen storage capacity after 100 cycles of absorption–desorption.  相似文献   

18.
Magnesium nanoparticles confined in carbon aerogels were successfully synthesized through hydrogenation of infiltrated dibutyl-magnesium followed by hydrogen desorption at 623 K. The average crystallite size of Mg nanoparticle is calculated to be 19.3 nm based on X-ray diffraction analyses. TEM observations showed that the size of MgH2 particle is mainly distributed in the range from 5.0 to 20.0 nm, with a majority portion smaller than 10.0 nm. The hydrogenation and dehydrogenation enthalpies of the confined Mg are determined to be −65.1 ± 1.56 kJ/mol H2 and 68.8 ± 1.03 kJ/mol H2 by Pressure–composition–temperature tests, respectively, slightly lower than the corresponding enthalpies for pure Mg. In addition, the apparent activation energy for hydrogen absorption is determined to be 29.4 kJ/mol H2, much lower than that of the micro-size Mg particles. These results indicate that the thermodynamic and absorption kinetic properties of confined Mg nanoparticles can be significantly improved due to the ‘nanosize effect’.  相似文献   

19.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

20.
With the depletion of global energies resources, improvement of hydrogen storage properties of materials like MgH2 is of great interest for future efficient renewable resources. In this study, a novel antiperovskite MgCNi3 was synthesized by powder metallurgy then introduced into Mg to fabricate MgMgCNi3 composite. The hydrogen storage properties of the obtained MgMgCNi3 composite were evaluated. MgMgCNi3 showed a high capacity of hydrogen storage and fast kinetics of hydrogen uptake/release at relatively low temperatures. About 4.42 wt% H2 was absorbed within 20 min at 423 K, and 4.81 wt% H2 was reversibly released within 20 min at 593 K. By comparison, milled MgH2 absorbed only 0.99 wt% H2 and hardly underwent any hydrogen evolution under the same conditions. In addition, MgMgCNi3 composite showed outstanding cycling stability, with hydrogen absorption capacity retention rates reaching 98% after ten cycles at 623 K. The characterization analyses revealed that MgCNi3 and Mg formed Mg2NiH4 hydride and carbonaceous material during hydrogenation, where Mg2NiH4 induced dehydrogenation of MgH2 and carbon played a dispersive role during the composite reaction. Both features synergistically benefited the hydrogen storage properties of MgH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号