首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
对6005A-T6铝合金挤压型材进行焊速为1000 mm/min的搅拌摩擦高焊速焊接,研究了对接面机械打磨对接头组织和力学性能的影响.结果 表明,与生产中常用的焊前打磨处理相比,尽管对接面未机械打磨的接头焊核区的"S"线更明显,但是两种接头的硬度分布和拉伸性能相当,拉伸时都在最低硬度区即热影响区断裂.高周疲劳实验结果表...  相似文献   

2.
Static and cyclic fatigue crack growth behaviour of gamma base titanium aluminides with three different microstructures were investigated. Influence of cyclic test frequency on fatigue crack growth behaviour was also studied at room temperature under a controlled humidity condition. The crack growth behaviour both under static and cyclic loading was strongly influenced by the microstructure. The threshold stress intensity and crack growth behaviour under cyclic loading were much inferior than that under static loading indicating the ‘true-cyclic fatigue’ effect exhibited in gamma base titanium aluminides. No significant effect of test frequency on the crack growth behaviour was observed for the equiaxed and duplex microstructure materials.  相似文献   

3.
Based on the proposed concept of the fatigue threshold stress intensity factor ranges, a model has been developed that describes the kinetics of physically small fatigue crack and long fatigue crack growth. The model allows the calculation of the crack growth rate under the regular fully-reversed uniaxial loading from the data on the static characteristics of mechanical properties and the microstructure of the initial material. The crack depth at which the cyclic plastic zone size ahead of the crack tip will exceed the grain size should be considered as a criterion of the small-to-long crack transition. Under high-cycle fatigue conditions physically small fatigue crack growth will be divided into two phases of growth: the first phase is when the crack propagates along the slip planes of individual grains, and the second one is when the crack changes the mechanism of growth and propagates in the plane perpendicular to the loading direction. The model validity has been tested using the experimental data on the growth of the long cracks in specimens of titanium alloy VT3-1 in seven microstructural states and the small cracks in specimens of titanium alloy Ti–6Al–4V and aluminum alloy 2024-T3. Good agreement between the calculated and experimental results is obtained.  相似文献   

4.
The static fatigue mechanism and effect of specimen thickness on static fatigue lifetime for four WC–Co cemented carbides were studied with different binder contents and carbide grain sizes. Static fatigue tests under three-point bend loading were conducted on different sized specimens. The fracture surfaces of rupture specimens were examined by scanning electron microscopy to investigate the static fatigue micromechanisms. Experimental results show that microcracks nucleate from defects or inhomogeneities and the connection of microcracks produces a main crack. The main crack propagates rapidly, resulting in the fracture of specimens. The extension of static fatigue lifetime with the increase of specimen thickness is due to the decrease of plastic zone size near the crack tip and relevant energy change during the crack growth. The effect of specimen thickness on static fatigue lifetime is much greater for cemented carbides with larger WC grain size or higher cobalt content, which is attributed to operative toughening mechanisms.  相似文献   

5.
Mode I and mode II fracture behaviour under static and dynamic loading was analyzed in two composites made up of the same reinforcement though embedded in two different matrices. Specifically, the delamination energy under static and dynamic loading was obtained for both materials and both fracture modes, i.e. the number of cycles necessary for the onset of fatigue delamination. Subsequently, the crack growth rate (delamination rate) was obtained for different percentages of the critical energy rate. The main goal of the study was to ascertain the influence of the matrix on the behaviour of the laminate under fatigue loading.From the experimental results for the onset of delamination, similar fatigue behaviour was observed at a low number of cycles for both matrices and both fracture modes, while in fatigue at a high number of cycles, a higher fatigue limit was obtained in the composite with the modified resin (higher toughness) for both fracture modes. From the point of view of crack growth rate, both materials behaved similarly for different levels of stress under fatigue and the two fracture modes for small crack lengths (initial growth zone < 5 mm), although the growth rate increased for large crack lengths. This behaviour was the same in both loading modes.  相似文献   

6.
Abstract— The paper deals with the fracture toughness of nodular cast irons of differing microstructure and manganese content. Fracture toughness was determined for static and impact loading in the temperature range from 77 to 523 K. The dependences of fracture toughness on manganese content and microstructure were obtained.
Fatigue crack growth rate curves were obtained at room temperature and a correlation between the parameters characterizing fatigue crack growth rate was found.
Fractographic studies revealed an important role of graphite inclusions in the process of fracture. On the one hand, as stress raisers they favour the nucleation of microcracks while on the other hand, they cause local retardation of fatigue crack growth probably due to the residual compressive stress surrounding them. In the mid-range of the fatigue crack growth rate curve a correlation was found between fatigue striation (or blocks of striations) spacings and the crack growth rate.  相似文献   

7.
Load-controlled fatigue tests are conducted for four positive R values on a low-alloy TRIP steel for two different heat treatments: an optimal treatment leading to a multiphase microstructure containing retained austenite, ferrite, bainite and martensite, and a non-optimal treatment leading to a ferritic–martensitic dual-phase microstructure. A significantly increased resistance to fatigue crack growth is found for the optimal case with respect to the non-optimal case. The amount of crack closure is found to be larger in case of the non-optimally treated (ferritic–martensitic) steel. Close to the crack tip, an increased hardness suggests martensite formation. An EBSD technique is used to quantify the volume of retained austenite ahead of the crack tip, within the plastic zone. It is found that martensite formation only occurs within the monotonic plastic zone during fatigue. By evaluation of the retained austenite fraction during straining in static tensile tests, the plastic strain levels within the plastic zone are assessed. Additionally, the effect of martensite formation on fracture toughness is estimated.  相似文献   

8.
This paper presents and discusses static (elastoviscoplastic and damage) and high‐cycle fatigue characterization of two microstructures of the Ti5553 alloy. The difference between these two microstructures is related to their heat treatment and precisely to the temperature of the final aging. For each microstructure, several tests were carried out to identify their static and fatigue properties and the test results were correlated to the microstructure. A fractographic analysis of the rupture sections was performed in order to investigate the fracture mechanisms of the two microstructures. Finally, the fatigue properties of the two microstructures were compared with those found in results reported in the literature for two other classical titanium alloys used for aeronautical applications.  相似文献   

9.
A modelling procedure was developed which is applicable to crack growth in notched components subjected to multiaxial fatigue for materials with different microstructures. An algorithm for crack growth, in a microstructure that was modelled as hexagons, was established as a competition between growth by crack linkages during the crack initiation and propagation stages and the propagation of a dominant crack as a single crack. Analytical results simulated by using the developed model were compared with experimental results from fatigue tests which had been conducted using notched specimens of pure copper, carbon steel and two kinds of titanium alloy. Cracking morphology, which was experimentally observed to depend on the microstructure and the loading mode, was well simulated using the present model. The fatigue failure life of a notched specimen was statistically estimated by a Monte Carlo procedure based on the model. The simulated life with a statistical scatter-band almost coincided with the experimental data.  相似文献   

10.
Fatigue life assessment for two‐phase steel SAE 1045 has been carried out by experimental and simulation techniques. Analytical approach, termed as fatigue lifetime calculation, was employed making use of a load increase testing procedure and constant amplitude tests equipped with measurement techniques – plastic strain amplitude, change in temperature and change in electrical potential difference. The predicted fatigue life has been validated by constant amplitude tests and compared with fatigue life estimation by microstructure‐based simulation. Simulation has been carried out over the complete cross section of the specimen. The simulation uses damage accumulation in the gage section of the specimen culminating in the macro‐crack propagation, taking into account the inhomogeneous fatigue resistance of the material element. The results show that at the initial intervals of high cycle fatigue range at relatively higher stress amplitudes, the experimental and simulation results are in agreement; whereas in the (high cycle fatigue) region at relatively low stress amplitudes, the simulation results were found more optimistic and the corresponding fatigue scatter is also increased. Each scatter is attributed to the relatively small number of analysed models of the material structure. Scanning electron microscope was used to determine volume fraction of the microstructure for simulation. Fatigue fracture surface analysis shows that crack initiated from internal defect of material and crack propagation is driven by silicon oxide inclusion.  相似文献   

11.
This paper presents an experimental investigation of the fracture and fatigue crack growth properties of Ti‐6Al‐4V produced by the Wire + Arc Additive Manufacture (WAAM®) process. First, fracture toughness was measured for two different orientations with respect to the build direction; the effect of wire oxygen content and build strategy were also evaluated in the light of microstructure examination. Second, fatigue crack growth rates were measured for fully additive manufactured samples, as well as for samples containing an interface between WAAM® and wrought materials. The latter category covers five different scenarios of crack location and orientation with respect to the interface. Fatigue crack growth rates are compared with that of the wrought or WAAM® alone conditions. Crack growth trajectory of these tests is discussed in relation to the microstructure characteristics.  相似文献   

12.
In situ atomic force microscope (AFM) imaging of the fatigue and stress corrosion (SC) crack in a high‐strength stainless steel was performed, under both static and dynamic loading. The AFM systems used were (1) a newly developed AFM‐based system for analysing the nanoscopic topographies of environmentally induced damage under dynamic loads in a controlled environment and (2) an AFM system having a large sample stage together with a static in‐plane loading device. By using these systems, in situ serial clear AFM images of an environmentally induced crack under loading could be obtained in a controlled environment, such as in dry air for the fatigue and in an aqueous solution for the stress corrosion cracking (SCC). The intergranular static SC crack at the free corrosion had a sharp crack tip when it grew straight along a grain boundary. The in situ AFM observations showed that the fatigue crack grew in a steady manner on the order of sub‐micrometre. The same result was obtained for the static SC crack under the free corrosion, growing straight along a grain boundary. In these cases, the crack tip opening displacement (CTOD) remained constant. However, as the static SC crack was approaching a triple grain junction, the growth rate became smaller, the CTOD value increased and the hollow ahead of the crack tip became larger. After the crack passed through the triple grain junction, it grew faster with a lower CTOD value; the changes in the CTOD value agreed with those of the crack growth rate. At the cathodic potential, the static SC crack grew in a zigzag path and in an unsteady manner, showing crack growth acceleration and retardation. This unsteady crack growth was considered to be due to the changes in the local hydrogen content near the crack tip. The changes in the CTOD value also agreed with those of the crack growth rate. The CTOD value in the corrosive environment was influenced by the microstructure of the material and the local hydrogen content, showing a larger scatter band, whereas the CTOD value of the fatigue crack in dry air was determined by the applied stress intensity factor, with a smaller scatter band. In addition, the CTOD value in the corrosive environment under both static and dynamic loading was smaller than that of the fatigue crack; the environmentally induced crack had a sharper crack tip than the fatigue crack in dry air.  相似文献   

13.
研究了在750℃时效处理的GH4742合金的组织演化对疲劳裂纹扩展行为的影响。结果表明,随着时效时间的延长合金中的块状一次γ′相长大且其边界圆滑化,花瓣状二次γ′相沿界面分裂,三次γ′相回溶在基体中或聚集长大成圆角方形γ′相。随着时效时间的延长合金疲劳裂纹的扩展速率呈增加趋势,主裂纹以绕过一次和二次γ′相的方式扩展。近门槛区的疲劳裂纹扩展速率对组织较为敏感,一次γ′相和二次γ′相边界的圆滑化使疲劳裂纹扩展速率提高,三次γ′相适当粗化可提高合金强度和ΔK较低区域裂纹的扩展抗力;Paris区和快速扩展区的应力强度因子范围ΔK较高,组织对疲劳裂纹扩展速率的影响降低。  相似文献   

14.
We present results from a systematic study linking material microstructure to monotonic and fatigue properties of NiTi shape memory alloys. We consider Ni-rich materials that are either (1) hot rolled or (2) hot rolled and cold drawn. In addition to the two material processing routes, heat treatments are used to systematically alter material microstructure giving rise to a broad range of thermal, monotonic and cyclic properties. The strength and hardness of the austenite and martensite phases initially increase with mild heat treatment (300 °C), and subsequently decrease with increased aging temperature above 300 °C. This trend is consistent with transmission electron microscopy observed precipitation hardening in the hot-rolled material and precipitation hardening plus recovery and recrystallization in the cold-drawn materials. The low-cycle pseudoelastic fatigue properties of the NiTi materials generally improve with increasing material strength, although comparison across the two product forms demonstrates that higher measured flow strength does not assure superior resistance to pseudoelastic cyclic degradation. Fatigue crack growth rates in the hot-rolled material are relatively independent of heat treatment and demonstrate similar fatigue crack growth rates to other NiTi product forms; however, the cold-drawn material demonstrates fatigue threshold values some 5 times smaller than the hot-rolled material. The difference in the fatigue performance of hot-rolled and cold-drawn NiTi bars is attributed to significant residual stresses in the cold-drawn material, which amplify fatigue susceptibility despite superior measured monotonic properties.  相似文献   

15.
The effect of grain boundary microstructure on fatigue crack propagation in austenitic stainless steel was investigated in order to control fatigue crack propagation. The fraction of low-Σ coincidence boundaries in specimens was controlled by thermomechanical processing. The specimen with the higher fraction of low-Σ boundaries (73%) showed the lower propagation rate of fatigue crack than the specimen with the lower fraction of low-Σ boundaries (53%). The ratio of intergranular fracture segments to the total crack length was lower for the specimen with the higher fraction of low-Σ boundaries. Moreover, the roles of grain boundaries in the fatigue crack propagation were investigated in connection with grain boundary microstructure, i.e., the character distribution and geometrical configuration of grain boundaries. It is evidenced that the approach to grain boundary engineering is applicable to controlling fatigue crack propagation in austenitic stainless steel.  相似文献   

16.
研究了通过热处理制度调整,在合金α片层之间形成细小的条状次生α相,形成一种新型的钛合金显微组织——双片层组织.通过对比等轴组织、双态组织、片层组织和双片层组织的性能,结果表明,在合金的强度和塑性不损失的条件下,双片层组织进一步提高了裂纹在合金中的扩展阻抗,使得合金的断裂韧性得到改善,疲劳裂纹扩展速率得到降低.双片层组织...  相似文献   

17.
A study has been made to investigate the influence of microstructure on the extrinsic and intrinsic fatigue properties of the Al---Li alloy, 8090. Two types of microstructure have been produced to compare the relative fatigue properties, one with a δ′ phase dominant microstructure and the other with a S′ + δ′ microstructure. Crack closure loads measured by the crack-opening displacement method have been used to obtain intrinsic fatigue resistance of the δ′ and S′ + δ′ microstructures. Results have shown that the extrinsic fatigue resistance of the δ′ microstructure was considerably higher than that of the S′ + δ′ microstructure, especially at lower growth rate, which was mainly due to the more severe crack path tortuosity and associated high levels of crack closure. In addition, the intrinsic fatigue resistance of the δ′ microstructure was also observed to be higher than that of the S′ + δ′ microstructure, presumably due to greater slip reversibility in the δ′ microstructure.  相似文献   

18.
Various thermal histories were utilized to generate samples with the same crystalline microstructure (i.e. degree of crystallinity, supermolecular structure, tie molecule density and lamellar thickness) for linear low-density polyethylenes (LLDPEs) with the same molecular weight, molecular weight distribution and branch frequency but different branch length. The static fatigue properties were found to improve with decreasing applied load for samples with the same type of short-chain branches. The failure time of static fatigue (t f) was found to increase dramatically as the branch length increased. An equation was used to predict t f from the stress, the branch length and other material parameters. In addition, the initial growth rate of the crack opening displacement and the time required to reach the critical opening displacement at the notch roots of the specimens were observed to decrease and increase, respectively, with increasing branch length. This dramatic improvement in static fatigue properties is attributed to the increasing sliding resistance of the polymer chains through the crystal and through entanglements in the amorphous region as the branch length of LLDPEs increases.  相似文献   

19.
This paper reports the results of a series of biaxial static compression and torsion experiments performed to evaluate the effects of static compression stress on the fatigue life those smooth tubes made of high strength spring steel. Compression pre-stress was introduced by a solid steel bar inserted into a hollow spring and loaded with a screw-joint. The experimentally obtained results show a significant extension of fatigue strain life as a result of combining axial compression loading with torsion. Cracking behavior was observed and it was noted that compression pre-stresses contribute to retardation of the fatigue crack initiation process and, consequently, contribute to the extension of fatigue life. The fatigue shear crack initiated in a transverse direction. This crack continues to propagate in the same direction until it starts to propagate as a macro-crack on the maximum shear plane.  相似文献   

20.
Fatigue crack growth behaviours of the titanium alloy Ti‐6Al‐4V, with two different microstructures, at different maximum stresses were identified by digital image correlation technique. Full‐field strains were monitored around fatigue cracks after consecutive cycles in fatigue crack growth experiments. Results indicated that the Ti‐6Al‐4V alloy with a bi‐modal microstructure had a better fatigue resistance than that with a primary‐α microstructure. Typical behaviours of small cracks and the evolution of multi‐scale fatigue cracks were clarified. The strain accumulations around the micro‐notch and fatigue crack increased with increasing number of load cycles. On the basis of von Mises strain mapping, it was found that crack growth rate could be characterized by crack‐tip plastic zone size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号