首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fuzzy Rule-Based Systems, FRBSs, are powerful tools to address regression problems. They can model the relationship between inputs and outputs by linguistic concepts. However, those FRBSs which are based on the conventional Type-1 fuzzy sets may not be able to handle some difficulties of real-world applications. In such situations, using novel representations of fuzzy sets seems like a good idea. Different extensions of fuzzy sets usually help to provide more precise models in the real-world problems. In this study, the influence of using fuzzy extensions in improving the efficiency of linguistic fuzzy rule-based regression models is investigated. For this purpose, a conventional Type-1 Mamdani FRBS is adapted to the three extensions of fuzzy sets, namely Interval Type-2, Intuitionistic, and Interval Type-2 Intuitionistic fuzzy sets. A two-pass method is proposed to define membership (non-membership) functions of these fuzzy sets; this method is based on the 3-tuples representation of the standard Type-1 membership functions. Wang and Mendel’s rule learning method is adapted to extract fuzzy rules from regression data. In order to tune the membership functions up to different extents, three evolutionary extensions are also presented for each type of the proposed FRBSs. Individual, internal, and external comparisons of the proposed FRBSs were done using 22 real-world regression datasets and statistical tests. Experimental results confirm that all the three proposed FRBSs outperform the classical Type-1 framework; furthermore, the Interval Type-2 Intuitionistic FRBS is the superior system so that an appropriate tuning of its parameters makes it the most accurate model.  相似文献   

2.
We examine the performance of a fuzzy genetics-based machine learning method for multidimensional pattern classification problems with continuous attributes. In our method, each fuzzy if-then rule is handled as an individual, and a fitness value is assigned to each rule. Thus, our method can be viewed as a classifier system. In this paper, we first describe fuzzy if-then rules and fuzzy reasoning for pattern classification problems. Then we explain a genetics-based machine learning method that automatically generates fuzzy if-then rules for pattern classification problems from numerical data. Because our method uses linguistic values with fixed membership functions as antecedent fuzzy sets, a linguistic interpretation of each fuzzy if-then rule is easily obtained. The fixed membership functions also lead to a simple implementation of our method as a computer program. The simplicity of implementation and the linguistic interpretation of the generated fuzzy if-then rules are the main characteristic features of our method. The performance of our method is evaluated by computer simulations on some well-known test problems. While our method involves no tuning mechanism of membership functions, it works very well in comparison with other classification methods such as nonfuzzy machine learning techniques and neural networks.  相似文献   

3.
Knowledge gained through classification of microarray gene expression data is increasingly important as they are useful for phenotype classification of diseases. Different from black box methods, fuzzy expert system can produce interpretable classifier with knowledge expressed in terms of if-then rules and membership function. This paper proposes a novel Genetic Swarm Algorithm (GSA) for obtaining near optimal rule set and membership function tuning. Advanced and problem specific genetic operators are proposed to improve the convergence of GSA and classification accuracy. The performance of the proposed approach is evaluated using six gene expression data sets. From the simulation study it is found that the proposed approach generated a compact fuzzy system with high classification accuracy for all the data sets when compared with other approaches.  相似文献   

4.
In this paper, fuzzy inference models for pattern classifications have been developed and fuzzy inference networks based on these models are proposed. Most of the existing fuzzy rule-based systems have difficulties in deriving inference rules and membership functions directly from training data. Rules and membership functions are obtained from experts. Some approaches use backpropagation (BP) type learning algorithms to learn the parameters of membership functions from training data. However, BP algorithms take a long time to converge and they require an advanced setting of the number of inference rules. The work to determine the number of inference rules demands lots of experiences from the designer. In this paper, self-organizing learning algorithms are proposed for the fuzzy inference networks. In the proposed learning algorithms, the number of inference rules and the membership functions in the inference rules will be automatically determined during the training procedure. The learning speed is fast. The proposed fuzzy inference network (FIN) classifiers possess both the structure and the learning ability of neural networks, and the fuzzy classification ability of fuzzy algorithms. Simulation results on fuzzy classification of two-dimensional data are presented and compared with those of the fuzzy ARTMAP. The proposed fuzzy inference networks perform better than the fuzzy ARTMAP and need less training samples.  相似文献   

5.
This paper presents a global system for the fusion of images segmented by various methods and interpreted by a fuzzy classifier. A set of complementary segmentation operators is applied to the image. Each region of the segmented images is interpreted by the fuzzy classifier, through membership degrees to classes. The fuzzy classifier builds the classes automatically from examples, even in the case of complex data sets. Interpreted images are then merged by a fusion operator from the fuzzy set theory. Several fusion operators are compared. They trust more high membership degrees to classes, which are considered as reliability degrees. The fusion of the interpreted images improves the segmentation, and gives solutions to segmentation and interpretation evaluation.  相似文献   

6.
The aim of this paper is to develop a fuzzy classifier form the point of view of a fuzzy information retrieval system. The genetic algorithm is employed to find useful fuzzy concepts with high classification performance for classification problems; then, each of classes and patterns can be represented by a fuzzy set of useful fuzzy concepts. Each of fuzzy concepts is linguistically interpreted and the corresponding membership functions remain fixed during the evolution. A pattern can be categorized into one class if there exists a maximum degree of similarity between them. For not distorting the usefulness of the proposed classifier for high-dimensional problems, the principal component analysis is incorporated into the proposed classifier to reduce dimensions. The generalization ability of the proposed classifier is examined by performing computer simulations on some well-known data sets, such as the breast cancer data and the wine classification data. The results demonstrate that the proposed classifier works well in comparison with other classification methods.  相似文献   

7.
Complex fuzzy logic   总被引:1,自引:0,他引:1  
A novel framework for logical reasoning, termed complex fuzzy logic, is presented in this paper. Complex fuzzy logic is a generalization of traditional fuzzy logic, based on complex fuzzy sets. In complex fuzzy logic, inference rules are constructed and "fired" in a manner that closely parallels traditional fuzzy logic. The novelty of complex fuzzy logic is that the sets used in the reasoning process are complex fuzzy sets, characterized by complex-valued membership functions. The range of these membership functions is extended from the traditional fuzzy range of [0,1] to the unit circle in the complex plane, thus providing a method for describing membership in a set in terms of a complex number. Several mathematical properties of complex fuzzy sets, which serve as a basis for the derivation of complex fuzzy logic, are reviewed in this paper. These properties include basic set theoretic operations on complex fuzzy sets - namely complex fuzzy union and intersection, complex fuzzy relations and their composition, and a novel form of set aggregation - vector aggregation. Complex fuzzy logic is designed to maintain the advantages of traditional fuzzy logic, while benefiting from the properties of complex numbers and complex fuzzy sets. The introduction of complex-valued grades of membership to the realm of fuzzy logic generates a framework with unique mathematical properties, and considerable potential for further research and application.  相似文献   

8.
An efficient method for learning (trapezoidal) membership functions for fuzzy predicates is presented. Positive and negative examples of one class are given together with a system of classification rules. The learned membership functions can be used for the fuzzy predicates occurring in the given rules to classify further examples. We show that the obtained classification is approximately correct with high probability. This justifies the obtained fuzzy sets within one particular classification problem, instead of relying on a subjective meaning of fuzzy predicates as normally done by a domain expert  相似文献   

9.
Automatic generation of fuzzy rule base and membership functions from an input-output data set, for reliable construction of an adaptive fuzzy inference system, has become an important area of research interest. We propose a new robust, fast acting adaptive fuzzy pattern classification scheme, named influential rule search scheme (IRSS). In IRSS, rules which are most influential in contributing to the error produced by the adaptive fuzzy system are identified at the end of each epoch and subsequently modified for satisfactory performance. This fuzzy rule base adjustment scheme is accompanied by an output membership function adaptation scheme for fine tuning the fuzzy system architecture. This iterative method has shown a relatively high speed of convergence. Performance of the proposed IRSS is compared with other existing pattern classification schemes by implementing it for Fisher's iris data problem and Wisconsin breast cancer data problems.  相似文献   

10.
A fuzzy approach to partitioning continuous attributes for classification   总被引:1,自引:0,他引:1  
Classification is an important topic in data mining research. To better handle continuous data, fuzzy sets are used to represent interval events in the domains of continuous attributes, allowing continuous data lying on the interval boundaries to partially belong to multiple intervals. Since the membership functions of fuzzy sets can profoundly affect the performance of the models or rules discovered, the determination of membership functions or fuzzy partitioning is crucial. In this paper, we present a new method to determine the membership functions of fuzzy sets directly from data to maximize the class-attribute interdependence and, hence, improve the classification results. In other words, it forms a fuzzy partition of the input space automatically, using an information-theoretic measure to evaluate the interdependence between the class membership and an attribute as the objective function for fuzzy partitioning. To find the optimum of the measure, it employs fractional programming. To evaluate the effectiveness of the proposed method, several real-world data sets are used in our experiments. The experimental results show that this method outperforms other well-known discretization and fuzzy partitioning approaches.  相似文献   

11.
In many real-world problems involving pattern recognition, system identification and modeling, control, decision making, and forecasting of time-series, available data are quite often of uncertain nature. An interesting alternative is to employ type-2 fuzzy sets, which augment fuzzy models with expressive power to develop models, which efficiently capture the factor of uncertainty. The three-dimensional membership functions of type-2 fuzzy sets offer additional degrees of freedom that make it possible to directly and more effectively account for model’s uncertainties. Type-2 fuzzy logic systems developed with the aid of evolutionary optimization forms a useful modeling tool subsequently resulting in a collection of efficient “If-Then” rules.The type-2 fuzzy neural networks take advantage of capabilities of fuzzy clustering by generating type-2 fuzzy rule base, resulting in a small number of rules and then optimizing membership functions of type-2 fuzzy sets present in the antecedent and consequent parts of the rules. The clustering itself is realized with the aid of differential evolution.Several examples, including a benchmark problem of identification of nonlinear system, are considered. The reported comparative analysis of experimental results is used to quantify the performance of the developed networks.  相似文献   

12.
Evolutionary design of a fuzzy classifier from data   总被引:6,自引:0,他引:6  
Genetic algorithms show powerful capabilities for automatically designing fuzzy systems from data, but many proposed methods must be subjected to some minimal structure assumptions, such as rule base size. In this paper, we also address the design of fuzzy systems from data. A new evolutionary approach is proposed for deriving a compact fuzzy classification system directly from data without any a priori knowledge or assumptions on the distribution of the data. At the beginning of the algorithm, the fuzzy classifier is empty with no rules in the rule base and no membership functions assigned to fuzzy variables. Then, rules and membership functions are automatically created and optimized in an evolutionary process. To accomplish this, parameters of the variable input spread inference training (VISIT) algorithm are used to code fuzzy systems on the training data set. Therefore, we can derive each individual fuzzy system via the VISIT algorithm, and then search the best one via genetic operations. To evaluate the fuzzy classifier, a fuzzy expert system acts as the fitness function. This fuzzy expert system can effectively evaluate the accuracy and compactness at the same time. In the application section, we consider four benchmark classification problems: the iris data, wine data, Wisconsin breast cancer data, and Pima Indian diabetes data. Comparisons of our method with others in the literature show the effectiveness of the proposed method.  相似文献   

13.
介绍了一种基于动态聚类的模糊分类规则的生成方法,这种方法能决定规则数目,隶属函数的位置及形状.首先,介绍了基于超圆雏体隶属函数的模糊分类规则的基本形式;然后,介绍动态聚类算法,该算法能将每一类训练模式动态的分为成簇,对于每簇,则建立一个模糊规则;通过调整隶属函数的斜度,来提高对训练模式分类识别率,达到对模糊分类规则进行优化调整的目的;用两个典型的数据集评测了这篇文章研究的方法,这种方法构成的分类系统在识别率与多层神经网络分类器相当,但训练时间远少于多层神经网络分类器的训练时间.  相似文献   

14.
Support vector learning for fuzzy rule-based classification systems   总被引:11,自引:0,他引:11  
To design a fuzzy rule-based classification system (fuzzy classifier) with good generalization ability in a high dimensional feature space has been an active research topic for a long time. As a powerful machine learning approach for pattern recognition problems, the support vector machine (SVM) is known to have good generalization ability. More importantly, an SVM can work very well on a high- (or even infinite) dimensional feature space. This paper investigates the connection between fuzzy classifiers and kernel machines, establishes a link between fuzzy rules and kernels, and proposes a learning algorithm for fuzzy classifiers. We first show that a fuzzy classifier implicitly defines a translation invariant kernel under the assumption that all membership functions associated with the same input variable are generated from location transformation of a reference function. Fuzzy inference on the IF-part of a fuzzy rule can be viewed as evaluating the kernel function. The kernel function is then proven to be a Mercer kernel if the reference functions meet a certain spectral requirement. The corresponding fuzzy classifier is named positive definite fuzzy classifier (PDFC). A PDFC can be built from the given training samples based on a support vector learning approach with the IF-part fuzzy rules given by the support vectors. Since the learning process minimizes an upper bound on the expected risk (expected prediction error) instead of the empirical risk (training error), the resulting PDFC usually has good generalization. Moreover, because of the sparsity properties of the SVMs, the number of fuzzy rules is irrelevant to the dimension of input space. In this sense, we avoid the "curse of dimensionality." Finally, PDFCs with different reference functions are constructed using the support vector learning approach. The performance of the PDFCs is illustrated by extensive experimental results. Comparisons with other methods are also provided.  相似文献   

15.
An ACS-based framework for fuzzy data mining   总被引:1,自引:0,他引:1  
Data mining is often used to find out interesting and meaningful patterns from huge databases. It may generate different kinds of knowledge such as classification rules, clusters, association rules, and among others. A lot of researches have been proposed about data mining and most of them focused on mining from binary-valued data. Fuzzy data mining was thus proposed to discover fuzzy knowledge from linguistic or quantitative data. Recently, ant colony systems (ACS) have been successfully applied to optimization problems. However, few works have been done on applying ACS to fuzzy data mining. This thesis thus attempts to propose an ACS-based framework for fuzzy data mining. In the framework, the membership functions are first encoded into binary-bits and then fed into the ACS to search for the optimal set of membership functions. The problem is then transformed into a multi-stage graph, with each route representing a possible set of membership functions. When the termination condition is reached, the best membership function set (with the highest fitness value) can then be used to mine fuzzy association rules from a database. At last, experiments are made to make a comparison with other approaches and show the performance of the proposed framework.  相似文献   

16.
The basic operations of fuzzy sets, such as negation, intersection, and union, usually are computed by applying the one‐complement, minimum, and maximum operators to the membership functions of fuzzy sets. However, different decision agents may have different perceptions for these fuzzy operations. In this article, the concept of parameterized fuzzy operators will be introduced. A parameter α will be used to represent the degree of softness. The variance of α captures the differences of decision agents' subjective attitudes and characteristics, which result in their differing perceptions. The defined parameterized fuzzy operators also should satisfy the axiomatic requirements for the traditional fuzzy operators. A learning algorithm will be proposed to obtain the parameter α given a set of training data for each agent. In this article, the proposed parameterized fuzzy operators will be used in individual decision‐making problems. An example is given to show the concept and application of the parameterized fuzzy operators. © 2003 Wiley Periodicals, Inc.  相似文献   

17.
Multiobjective genetic fuzzy rule selection is based on the generation of a set of candidate fuzzy classification rules using a preestablished granularity or multiple fuzzy partitions with different granularities for each attribute. Then, a multiobjective evolutionary algorithm is applied to perform fuzzy rule selection. Since using multiple granularities for the same attribute has been sometimes pointed out as to involve a potential interpretability loss, a mechanism to specify appropriate single granularities at the rule extraction stage has been proposed to avoid it but maintaining or even improving the classification performance. In this work, we perform a statistical study on this proposal and we extend it by combining the single granularity-based approach with a lateral tuning of the membership functions, i.e., complete contexts learning. In this way, we analyze in depth the importance of determining the appropriate contexts for learning fuzzy classifiers. To this end, we will compare the single granularity-based approach with the use of multiple granularities with and without tuning. The results show that the performance of the obtained classifiers can be even improved by obtaining the appropriate variable contexts, i.e., appropriate granularities and membership function parameters.  相似文献   

18.
19.
A neural fuzzy system with fuzzy supervised learning   总被引:2,自引:0,他引:2  
A neural fuzzy system learning with fuzzy training data (fuzzy if-then rules) is proposed in this paper. This system is able to process and learn numerical information as well as linguistic information. At first, we propose a five-layered neural network for the connectionist realization of a fuzzy inference system. The connectionist structure can house fuzzy logic rules and membership functions for fuzzy inference. We use alpha-level sets of fuzzy numbers to represent linguistic information. The inputs, outputs, and weights of the proposed network can be fuzzy numbers of any shape. Furthermore, they can be hybrid of fuzzy numbers and numerical numbers through the use of fuzzy singletons. Based on interval arithmetics, a fuzzy supervised learning algorithm is developed for the proposed system. It extends the normal supervised learning techniques to the learning problems where only linguistic teaching signals are available. The fuzzy supervised learning scheme can train the proposed system with desired fuzzy input-output pairs which are fuzzy numbers instead of the normal numerical values. With fuzzy supervised learning, the proposed system can be used for rule base concentration to reduce the number of rules in a fuzzy rule base. Simulation results are presented to illustrate the performance and applicability of the proposed system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号