首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hydroformylation of olefins over supported gold catalysts in an autoclave reactor under mild conditions (100–140 °C, 3–5 MPa) has been studied. Over Au/AC (activated carbon), Au/PVP (polyvinylpyrrolidone), Au/Al2O3, Au/TiO2, Au/Fe2O3, Au/ZnO, Au/CeO2 and Co3O4, 1-olefin mainly remained unchanged and the major products were isomerized olefins or hydrogenated paraffin. In contrast, Au nanoparticles deposited on Co3O4 led to remarkably high catalytic activities in hydroformylation reaction with selectivities above 85% to desired aldehydes. The hydroformylation of olefins proceeds preferentially at temperatures below 140 °C, above which the reactions of olefins gradually shifted to isomerization and then to hydrogenation. It appeared that the activity and selectivity of hydroformylation reaction strongly depend on the molecular structure of olefins, which could be ascribed to steric constraints as internal olefins are relatively inappropriate to form alkyl group and subsequent acyl group by insertion of CO. The Au/Co3O4 catalyst can be recycled by simple decantation with slight decrease in catalytic activity along with an increase in recycle times, which is a great advantage over homogeneous catalysts. The role of gold nanoparticles can be assumed to dissociate hydrogen molecule into atomic species which reduce Co3O4 to Co metal under mild reaction conditions.  相似文献   

2.
Rh(acetylacetonate)(CO)2/sulfonated-Xantphos dissolved in pure 1-n-butyl-3-methylimidazolium hexafluorophosphate ionic liquid catalyses the hydroformylation of heavy olefins (C8–C12) with selectivities (up to 99% in n-aldehydes). The selectivity is strongly influenced by the nature of the ionic phase and co-solvent.  相似文献   

3.
Activated carbon with nanoporous structure, high surface area (2500 m2/g) and total pore volume (2.35 cm3/g) was prepared from Mango seed shell (Mangifera indica L.) via chemical activation method and used as support to impregnate active hydroformylation rhodium complexes HRhCO(PPh3)3 and Rh(acac)(CO)2. The prepared catalysts were characterized by XRD, SEM, TEM, NMR, IR, TGA, and N2 adsorption/desorption techniques. The supported catalysts have shown excellent selectivity for aldehydes (~ 99%) in the hydroformylation of olefins with good stability and recyclability up to 4 cycles.  相似文献   

4.
The two‐phase hydroformylation of higher olefins with the rhodium/trisulfonated triphenylphosphine catalytic system in the presence of various chemically modified α‐cyclodextrins has been investigated. These cyclodextrins allowed us to increase greatly the reaction rate and the chemoselectivity of the reaction but, contrary to what has been observed previously with the chemically modified β‐cyclodextrins, the linear to branched aldehydes ratio was not affected by the presence of α‐cyclodextrin derivatives. Indeed, the latter was found to be similar to that obtained without any mass transfer promoter, suggesting that the catalytic species are stable in the presence of α‐cyclodextrin derivatives.  相似文献   

5.
A new chiral ligand, 1,6-anhydro-2,4-bis(diphenylphosphino)pyranose (ABDPP), was prepared from -glucose. The ligand was used to prepare a chiral rhodium catalyst system for asymmetric hydroformylation of olefins. For vinyl acetate, the catalytic hydroformylation gave rather high yield (96%), high enantioselectivity (92% ee), and high regioselectivity (b/n=95/5). But for styrene and norbornene, the results were not so good. The rather high sterioselectivity in the hydroformylation of vinyl acetate is explained in terms of the hydrogen bonding between OH group in the ligand molecule and the carbonyl group of vinyl acetate.  相似文献   

6.
The effect of methylated cyclodextrins on the RhH(CO)(TPPTS)3 complex in hydroformylation conditions [50 atm of CO/H2 (1/1) and 80 °C] has been investigated by high‐pressure 31P{1H} NMR spectroscopy. In the presence of methylated β‐cyclodextrin, the equilibria between the rhodium species lie in favor of phosphine low‐coordinated rhodium species. The formation of a stable inclusion complex between this cyclodextrin and the trisulfonated triphenylphosphine ligand (TPPTS) was found to be the key to understanding the displacement of the equilibria. Indeed, the methylated α‐cyclodextrin which does not interact with the TPPTS and the methylated γ‐cyclodextrin which can weakly bind to the TPPTS have no and a very low effect on the equilibria, respectively. These results explain for the first time why a decrease in the normal to branched aldehydes ratio is always observed when cyclodextrins are used as mass‐transfer agents in aqueous biphasic hydroformylation processes.  相似文献   

7.

Abstract  

This work describes the synthesis and characterization of PEGPHOT (tri-(4-triethylenoglycol-monomethyletherphenyl)phosphite) and its use in the rhodium-catalyzed hydroformylation of different olefins. In the hydroformylation of 1-hexene, it was possible to carry out 10 recycles of the catalytic system without significant loss in activity.  相似文献   

8.
羰基合成高碳醇工艺研究进展   总被引:2,自引:1,他引:2  
综述了对液/液两相催化高碳烯烃氢甲酰化制备高碳醇的研究进展,针对经典的水/有机两相体系不能用于催化高碳烯烃氢甲酰化的问题,全面介绍了适用于水/有机两相体系中高碳烯烃氢甲酰化的温控相转移催化法等6种改进方法。同时对氟两相、离子液体两相、超临界流体等非水液/液两相体系中的高碳烯烃氢甲酰化作了系统阐述,并对它们的应用前景进行了评价。  相似文献   

9.
Hydroformylation of ethylene and CO hydrogenation were studied over cobalt-based catalysts derived from reaction of Co2(CO)8 with ZnO, MgO and La2O3 supports. At 433 K a similar activity sequence was reached for both reactions: Co/ ZnO > Co/La2O3 > Co/MgO. This confirms the deep analogy between hydroformylation and CO hydrogenation into alcohols. In the CO hydrogenation the selectivity towards alcohol mixture (C1-C3) was found to be near 100% at 433 K for a conversion of 6% over the Co/ZnO catalyst; this catalyst showed oxo selectivity higher than 98% in the hydroformylation of ethylene. Magnetic experiments showed that no metallic cobalt particles were formed at 433 K. It is suggested that the active site for the step that is common to both reactions is related to the surface homonuclear Co2+/[Co(CO)4] ion-pairing species.  相似文献   

10.
Metal pyrophosphates (M–P2O7, where M is V, Zr, Cr, Mg, Mn, Ni or Ce) have been found to catalyze the oxidative dehydrogenation of propane to propene. The reaction was conducted at 1 atm, 450–550°C and feed flowrate of 75 cm3/min (20 cm3/min propane, 5 cm3/min oxygen and the balance is helium). All catalysts showed increase in degrees of conversion and decrease in olefins selectivity with increase in reaction temperature. At 550°C, MnP2O7 exhibited the highest activity (40.7% conversion) and total olefins (C3H6 and C2H4) yield (29.3%). The other catalysts, indicated by their respective metals, may be ranked (based on olefins yield) as V (16.9%) < Cr (17.5%) < Ce (25.1%) < Zr (26.2%) < Ni (26.8%) < Mg (27.9%). The reactivity of the lattice oxygen was estimated from energy of formation of the corresponding metal oxides. Correlation between the selectivity to propene and the standard energy of formation was attempted. Although there was no clear correlation, the result suggested that the lattice oxygen play a key role in the selectivity-determining step.  相似文献   

11.
The solubility of the modifying ligand is an important parameter for the efficiency of a rhodium‐catalysed hydroformylation system. A facile synthetic procedure for the preparation of well‐defined xanthene‐type ligands was developed in order to study the influence of alkyl substituents at the 2‐, and 7‐positions of the 9,9‐dimethylxanthene backbone and at the 2‐, and 8‐positions of the phenoxaphosphino moiety of ligands 1 – 16 on solubility in toluene and the influence of these substituents on the performance of the ligands in the rhodium‐catalysed hydroformylation. An increase in solubility from 2.3 mmol⋅L−1 to >495 mmol⋅L−1 was observed from the least soluble to the most soluble ligand. A solubility of at least 58 mmol⋅L−1 was estimated to be sufficient for a large‐scale application of these ligands in hydroformylation. Highly active and selective catalysts for the rhodium‐catalysed hydroformylation of 1‐octene and trans‐2‐octene to nonanal, and for the hydroformylation of 2‐pentene to hexanal were obtained by employing these ligands. Average rates of >1600 (mol aldehyde) × (mol Rh)−1×h−1 {conditions: p(CO/H2) = 20 bar, T = 353 K, [Rh] = 1 mM, [alkene] = 637 mM} and excellent regio‐selectivities of up to 99% toward the linear product were obtained when 1‐octene was used as substrate. For internal olefins average rates of >145 (mol aldehyde)×(mol Rh)−1×h−1 {p(CO/H2) = 3.6–10 bar, T = 393 K, [Rh] = 1 mM, [alkene] = 640–928 mM} and high regio‐selectivities up to 91% toward the linear product were obtained.  相似文献   

12.
Molybdenum promoted Rh/SiO2 catalysts have been prepared by using the heteronuclear cluster (C5H5)3RhMo2(CO)5 as well as metal salt precursors. The promoting effect of molybdenum has been studied for the hydroformylation of ethene and propene and the hydrogenation of acetaldehyde. It has been found that molybdenum, especially on the cluster-derived catalyst, increases both the hydrogenation and the hydroformylation rate of the olefins. No specific influence on the CO insertion reaction could be obtained. As an explanation, the promotion of the initial step to form intermediate surface alkyl groups has been proposed as the rate determining step for ethene hydroformylation. The promotion of the alcohol formation by bimetallic centers having Rh and Mo in close vicinity has been supported by the results of the hydrogenation of acetaldehyde.  相似文献   

13.
During the last decades, the engineering of chemical processes has focused more and more on energy efficiency and reduction of climate‐changing emissions. Regarding the synthesis of aldehydes, the photocatalytic dehydrogenation of alkanes to olefins, using visible (sun) light, and the subsequent hydroformylation of such olefins with CO2 seem to be capable to achieve both targets. This work deals mainly with catalyst concepts for both reaction steps. Here, kinetic studies of the photocatalytic alkane dehydrogenation are presented, and the feasibility of hydroformylation using CO2 is described in a continuous gas phase reaction. The problems that have to be solved befoe the technical application are discussed and an economic and ecological evaluation for both processes is carried out.  相似文献   

14.
The hydroformylation of olefins with the water soluble complex HRh(CO) [P(m-C6H4SO3Na)3]3 (1) is dependent on the solubility of the olefins in the aqueous phase. In contrast, when the aqueous solution of1 is immobilized on a high surface area silica support the effects of the size of the olefins diminish. The immobilized catalyst1 on silica shows significant water loss but not rhodium leaching. It is proposed that the hydrophilic support holds the water soluble phosphines by hydrogen bonding of the hydrated sodium-sulphonate groups to the surface.  相似文献   

15.
The thermoregulated phase-transfer cobalt catalyst, composed of a polyethylene glycol tailed phosphine ligand and cobalt carbonyl, has been applied for the conversion of normal C11–12 internal olefins into linear higher alcohols via hydroformylation and hydrogenation in an aqueous/organic biphasic system. Good catalyst activity (TOF = 2.2 h 1) in this biphasic system was obtained which was as high as that in the homogeneous system where a cobalt catalyst was modified by a lipophilic phosphine ligand. Easy catalyst recovery has been done by phase decanting, and the aqueous phase with the cobalt catalyst was used directly in recycling. In 4 times of recycling tests, the yield of alcohols decreased slightly, the leaching of cobalt into the organic phase was less than 2.7% each time and a total catalyst TON of around 150 was obtained.  相似文献   

16.
The behavior of heptakis(2,3‐di‐O‐methyl‐6‐O‐sulfopropyl)‐β‐cyclodextrin as inverse phase transfer catalyst in biphasic Tsuji–Trost and hydroformylation reactions has been investigated. In terms of activity, this methylated sulfopropyl ether β‐cyclodextrin is much more efficient than the randomly methylated β‐cyclodextrin, which was the most active cyclodextrin known to date. From a selectivity point of view, the intrinsic properties of the catalytic system are fully preserved in the presence of this cyclodextrin as the chemo‐ or regioselectivity was found to be identical to that observed without a mass transfer promoter in the hydroformylation reaction. The efficiency of this cyclodextrin was attributed to its high surface activity and to the absence of interactions with the catalytically active species and the water‐soluble phosphane used to dissolve the organometallic catalyst in the aqueous phase.  相似文献   

17.
The concept of covalently connecting a catalytically active transition metal center with a water-soluble receptor (host molecule) makes a new type of supramolecular catalysis possible in which the features of molecular recognition, phase transfer catalysis and transition metal catalysis are combined in a single system. The first examples of this principle make use of the commercially available β-cyclodextrin (β-CD) as the receptor and rhodium complexes of diphosphanes as the catalytically active center, these being covalently connected to one another via a spacer. In competitive hydrogenation of certain olefins unusual degrees of substrate selectivity based on the molecular recognition are observed, not possible by conventional transition metal catalysts. The two-phase (H2O/organic) hydrogenation of nitro-aromatics also is a smooth process with these supramolecular catalysts. They also constitute an unusually active catalyst system for the selective hydroformylation of higher olefins such as 1-octene in a two-phase system.  相似文献   

18.
Au/TiO2 catalysts with different gold loadings were prepared by deposition–precipitation method and used for the liquid phase hydrogenation of phthalic anhydride. All the studied Au/TiO2 catalysts exhibited excellent activity with high selectivity (>92%) to phthalide under mild reaction conditions (180 °C and 3.0 MPa H2). Specially, catalysts with 2–3 wt.% gold loading were highly active and selective for the formation of phthalide. When reused, the catalyst showed a certain deactivation, but still was highly selective to phthalide. The deactivation was attributed to the leaching of gold, collapse of the pore structure and accumulation of organic species on the surface.  相似文献   

19.
In the hydrogenation of CO at atmospheric pressure, unsupported molybdenum carbide catalyst produced mostly C1-C5 paraffins. Promotion of the catalyst with K2CO3 yielded C2-C5 hydrocarbons consisting of 80–100% olefins and reduced the methane selectivity. The selectivity of C2-C5 olefins among all hydrocarbon products was 50–70 wt% at CO conversions up to 70%.This work has been supported by Korean Science and Engineering Foundation through a contract 88-03-1302.  相似文献   

20.
Long chain olefins are converted into aldehydes by hydroformylation using synthesis gas CO/H2 and further converted in an acid‐catalyzed conversion with glycerol in a one‐pot procedure. Yields are up to 95 %. The obtained mixtures of 5‐ and 6‐membered rings are potential fuel additives offering alternative use of glycerol from renewable resources. By optimization of reaction conditions such as catalyst precursor, ligand, pressure, temperature, solvent or catalyst/substrate ratio a highly selective hydroformylation towards linear acetals was achieved. For synthesis of larger amounts, glycerol was converted with alkenes on a 2‐L‐scale and with aldehydes on a 60‐L‐scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号