共查询到19条相似文献,搜索用时 140 毫秒
1.
以V2O5、NH4H2PO4、Li2CO3、(CH3COO)2Mn.4H2O原料,以葡萄糖和抗坏血酸为复合还原剂及碳源,通过常温还原-低温烧结法制备锂离子电池正极材料Li3V(2-2x/3)Mnx(PO4)3/C(x=0,0.03,0.06,0.09,0.12)。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试对该正极材料的物相、结构、微观形貌以及电化学性能进行了表征。结果表明,Mn2+的掺杂对磷酸钒锂电化学性能的发挥影响很大,其中当锰掺杂量x=0.09时材料表现出最佳的电化学性能,0.2 C倍率条件下首次放电比容量131 mAh/g,循环50次后容量衰减仅为4.02%。 相似文献
2.
首次采用溶胶-凝胶法制备Co掺杂Na_3V_(2-x)Co_x(PO_4)_2F_3(x=0.00,0.05,0.1,0.2)钠离子电池正极材料。使用XRD、FE-SEM、恒流充放电和交流阻抗测试分析了Co掺杂对Na_3V_2(PO_4)_2F_3材料的结构和电化学性能的影响。结果表明,Co~(2+)取代V~(3+)可在Na_3V_2(PO_4)_2F_3晶格内产生V~(3+/4+)混合电价从而提高Na_3V_2(PO_4)_2F_3材料的电子电导率,具有更大离子半径的Co~(2+)替换V~(3+)可增大Na_3V_2(PO_4)_2F_3晶胞体积,扩宽钠离子传输通道,从而提高其离子电导率。此外,Co掺杂可有效减小Na_3V_2(PO_4)_2F_3电极的电荷转移阻抗。电化学测试结果表明,x=0.1时的Na_3V_(1.9)Co_(0.1)(PO_4)_2F_3电极展现出了最优异的电化学性能,0.1C时的首次放电比容量为111.3mAh·g~(-1),5C时首周可逆容量为91.9mAh·g~(-1),循环80次的容量保持率为70%。 相似文献
3.
浸渍Ca3(PO4)2溶液对SiC窑具材料抗氧化性的影响 总被引:1,自引:1,他引:1
《中国陶瓷》2001,37(4):4-6
SiC窑具材料浸渍Ca3(PO4)2饱和溶液,能填充气孔,降低气孔率,阻碍O2的扩散,能增加SiC窑具抗氧化性和延长使用寿命.浸渍次数越多,氧化速度越小,其中浸渍4次最佳,浸渍1-4次氧化速度常数的比值=K1K2K3K4=10.30×10-78.94×10-74.17×10-72.65×10-7=3.893.371.571. 相似文献
4.
5.
采用溶胶-碳热还原法制备了Li3V2-xMx(PO4)3/C(M=Ti,Fe,Ce;x=0.06)复合正极材料,通过XRD、SEM、恒流充放电和电化学阻抗等测试方法研究了Ti4+、Fe3+和Ce3+适量掺杂对材料结构、形貌和电化学性能的影响。结果表明:Ti4+、Fe3+和Ce3+的适量掺杂并未改变材料结构,对材料形貌也未产生明显的影响,但可以在一定程度上降低一次颗粒的尺寸,提高材料的电导率。所有掺杂材料的充放电性能和循环稳定性明显改善,其中Li3V1.94Fe0.06(PO4)3/C表现出最优的电化学性能。 相似文献
6.
用一步碳热还原法制备了Li3V2-xCux(PO4)3/C(x=0.00、0.02、0.05、0.08、0.10、0.15)复合正极材料,并研究了掺杂对材料结构、微观形貌、充放电性能的影响。结果表明掺杂少量铜(Ⅱ)不会影响材料Li3V2(PO4)3的基本结构,但会在Li3V2(PO4)3中形成电子缺陷,提高晶体内部原子的无序化程度,降低极化和电荷转移电阻。从而改善材料的电化学性能。Li3V1.98Cu0.02(PO4)3/C的10 C放电容量比Li3V2(PO4)3/C提高了20 mA.h/g,具有较好的倍率性能。 相似文献
7.
8.
以V_2O_5、LiOH、NH_4H_2PO_4、Al(OH)_3和柠檬酸为原料采用溶胶-凝胶法合成V位掺杂Al3+的Li_3V_(2-x)Al_x(PO_4)_3/C复合材料,仔细研究Al3+掺杂对磷酸钒锂材料电化学性能的影响,确定最佳的Al掺杂量。同时借助各种分析手段(如XRD、SEM、TG-DTA)对掺杂后Li_3V_(2-x)Al_x(PO_4)3/C材料结构变化进行探究,深入理解V位掺杂对电化学性能产生作用的内在机理。Li_3V_2-xAlx(PO_4)_3/C(x=0,0.02,0.05,0.1,0.15,0.2)首次放电比容量分别为103.7 m Ah/g,105.7 m Ah/g,108.4 m Ah/g,141.1 m Ah/g,130.1 Ah/g,124.8 m Ah/g。在一定范围内,随着Al3+量的提高,相应的Li3V2-xAlx(PO4)3/C的首次放电比容量也不断的增加。 相似文献
9.
10.
11.
Guijia Cui Hong Wang Fengping Yu Haiying Che Xiaozhen Liao Linsen Li Weimin Yang Zifeng Ma 《中国化学工程学报》2022,46(6):280-286
NASICON-type Na3V2(PO4)3 is a promising electrode material for developing advanced sodium-ion batteries. Preparing Na3V2(PO4)3 with good performance by a cost-effective and large-scale method is significant for industrial applications. In this work, a porous Na3V2(PO4)3/C cathode material with excellent electrochemical performance is successfully prepared by an agar-gel combined with freeze-drying method. The Na3V2(PO4)3/C cathode displayed specific capacities of 113.4 mAh·g-1, 107.0 mAh·g-1 and 87.1 mAh·g-1 at 0.1 C, 1 C and 10 C, respectively. For the first time, the 500-mAh soft-packed symmetrical sodium-ion batteries based on Na3V2(PO4)3/C electrodes are successfully fabricated. The 500-mAh symmetrical batteries exhibit outstanding low temperature performance with a capacity retention of 83% at 0 ℃ owing to the rapid sodium ion migration ability and structural stability of Na3V2(PO4)3/C. Moreover, the thermal runaway features are revealed by accelerating rate calorimetry (ARC) test for the first time. Thermal stability and safety of the symmetrical batteries are demonstrated to be better than lithium-ion batteries and some reported sodium-ion batteries. Our work makes it clear that the soft-packed symmetrical sodium ion batteries based on Na3V2(PO4)3/C have a prospect of practical application in high safety requirement fields. 相似文献
12.
13.
14.
以Ti(SO4)2和Na3PO4·12H2O为原料,在表面活性剂聚乙二醇(PEG)-400的存在下,进行固相反应,然后将混合物在60 ℃下保温4 h, 接着用水洗去混合物中的可溶性无机盐并于100 ℃下干燥,即得纳米晶NaTi2(PO4)3 的前驱体,将前驱体煅烧可得NaTi2(PO4)3纳米晶.前驱体和它的煅烧产物通过TG/DTA,IR,XRD和UV-vis表征.结果表明,500 ℃下煅烧2 h得到的产物为无定形结构,700 ℃下煅烧2 h得到具有高结晶度的斜方NaTi2-(PO4)3[空间群R-3c(167)],其平均一次粒径为47 nm.前驱体及煅烧产物均具有强的紫外吸收能力. 相似文献
15.
单斜结构的磷酸钒锂[Li3V2(PO4)3]材料与其他锂离子电池正极材料相比具有较高的工作电压(3.0~4.8 V)、良好的离子迁移率和优良的热稳定性,是一种具有竞争优势和发展前景的大功率锂离子电池正极材料,成为了近年来研究的热点。综述了锂离子电池正极材料磷酸钒锂的结构特点及其充放电机理。磷酸钒锂的常用合成方法有碳热还原法、水热法、溶胶-凝胶法及流变相法等,着重阐述了磷酸钒锂的不同合成方法对所制备样品的形貌和电化学性能的影响。分析总结了不同合成方法的改进方法,以改善磷酸钒锂正极材料电子导电性和锂离子扩散系数较低的问题。最后,针对磷酸钒锂正极材料在锂离子电池的应用中所存在的问题展望了该材料未来可能的发展方向和研究热点。指出需要优化材料的制备方法以改善材料的颗粒形貌、提高电子导电率和扩散系数等,进而改善材料的循环性能、倍率性能和充放电性能等;需要改进制备流程、提高实验的安全性、简化反应流程和减少制备成本等,以实现磷酸钒锂正极材料的工业化应用。 相似文献
16.
17.
以溶液法为制备方法、以葡萄糖为碳源合成了一种钠离子掺杂的锂离子电池正极材料Li3-xNaxV2(PO4)3/C(x=0、0.01、0.03、0.05、0.07)。XRD结果显示组成相为单斜晶型,与标准Li3V2(PO4)3衍射峰完全一致。微量钠掺杂并未改变产物的相组成与晶体结构,但使得晶胞参数有所变化,这种变化有利于提高锂离子的扩散系数。SEM与TEM谱图显示材料颗粒基本为近似椭圆形,粒径分布均匀,碳包覆层完整。充放电测试显示Li2.97Na0.03V2(PO4)3/C试样的倍率性能最好,在12C倍率下放电比容量约为100mAh/g,循环伏安测试也证明该试样的锂离子扩散系数较高,比纯相Li3V2(PO4)3提高了约2个数量级。 相似文献
18.
19.
A novel sol–gel method based on V2O5·nH2O hydro-gel was developed to synthesize nanocrystalline Li3V2(PO4)3/carbon composite material. In this route, V2O5·nH2O hydro-gel, NH4H2PO4, Li2CO3 and high-surface-area carbon were used as starting materials to prepare precursor, and the Li3V2(PO4)3/carbon was obtained by sintering precursor at 750 °C for 4 h in flowing argon. The sol–gel synthesis ensures homogeneity of the precursors and improved reactivity. The sample was characterized by XRD, SEM and TEM. X-ray diffraction results show Li3V2(PO4)3 sample is monoclinic structure with the space group of P21/n. The TEM image indicates that the Li3V2(PO4)3 particles modified by conductive carbon are about 70 nm in diameter. The Li3V2(PO4)3/carbon system showed that the discharge capacities in the first and 50th cycle are about 155.3 and 143.6 mAh/g, respectively, in the range of 3.0–4.8 V. The sol–gel method is fit for the preparation of Li3V2(PO4)3/carbon composite material which may offer some favorable properties for commercial application. 相似文献