首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 352 毫秒
1.
李健伟  曲长文  彭书娟 《控制与决策》2019,34(10):2191-2197
针对合成孔径雷达(SAR)图像中舰船目标稀疏的特点,提出一种基于级联卷积神经网络(CNN)的SAR图像舰船目标检测方法.将候选区域提取方法BING与目标检测方法Fast R-CNN相结合,并采用级联CNN设计,可同时兼顾舰船检测的准确率和速度.首先,针对SAR图像中相干斑噪声影响梯度检测的问题,在原有梯度算子的基础上增加平滑算子,并对图像尺寸个数和候选框个数进行适应性改进,使其提取到的候选窗口更快更准;然后,设计级联结构的Fast R-CNN检测框架,前端简单的CNN负责排除明显的非目标区域,后端复杂的CNN对高概率候选区域进行分类和位置回归,整个结构可以保证快速准确地对舰船这种稀疏目标进行检测;最后,设计一种联合优化方法对多任务的目标函数进行优化,使其更快更好地收敛.在SAR图像舰船检测数据集SSDD上的实验结果显示,所提出的方法相比于原始Fast R-CNN和Faster R-CNN检测方法,检测精度从65.2%和70.1%提高到73.5%,每张图像的处理时间从2235ms和198ms下降到113ms.  相似文献   

2.
针对单次多盒检测算法(SSD)对复杂背景下合成孔径雷达(SAR)图像舰船目标的检测容易出现误检或漏检情况,提出一种基于融合注意力机制与改进的SSD算法的目标检测方法。首先在SSD算法上引入ResNet网络并进行改进,以提供丰富的语义信息和细节信息,提高算法的鲁棒性;其次融合通道和空间注意力增强对舰船目标的辨认能力,抑制海杂波等干扰信息;同时改进损失函数来解决舰船密集分布时的漏检问题,提高网络训练效果。数据集上的实验表明,该方法平均准确率(mAP)为87.6%,比SSD算法提高了4.2个百分点,目标的漏检和误检明显减少。相比SSD算法,该算法对复杂背景下的舰船目标有较好的辨别能力和鲁棒性,抗干扰能力有所提升。  相似文献   

3.
4.
针对SSD(single shot multibox detector,单步多盒检测)算法在车辆的自动紧急制动(AEB)中对远方目标检测效果差、检测速度慢、对硬件资源需求高的问题,提出了一种基于SSD的改进算法.首先用MobileNetv2替换SSD中的AGG-16作为检测网络,以减少参数数量和计算量,降低网络对硬件性...  相似文献   

5.
针对合成孔径雷达图像目标在背景复杂、场景较大、干扰杂波较多情况下检测困难的问题,设计一种层数较少的卷积神经网络,在完备数据集验证其特征提取效果后,作为基础特征提取网络使用.在训练数据集中补充复杂的大场景下目标训练样本.同时设计一种多层次卷积特征融合网络,增强对大场景下小目标的检测能力.通过对候选区域网络和目标检测网络近...  相似文献   

6.
7.
针对当前基于深度学习的目标检测算法采取的特征图融合方式存在缺陷,算法普遍不能很好地应对尺度变化等问题,提出一种跨深度卷积特征增强的目标检测算法CDC-YOLO.对YOLOv3算法进行改进,针对多尺度预测层各自的特点采用与之适应的特征增强模块,采用多通道的跨深度的卷积核并结合空洞卷积并行地提取特征,最终级联起来.该模块能...  相似文献   

8.
目的 利用合成孔径雷达(synthetic aperture radar,SAR)图像进行舰船目标检测是实施海洋监视的重要手段。基于深度学习的目标检测模型在自然图像目标检测任务中取得了巨大成功,但由于自然图像与SAR图像的差异,不能将其直接迁移到SAR图像目标检测中。针对SAR图像目标检测实际应用中对速度和精度的需求,借鉴经典的单阶段目标检测模型(single shot detector,SSD)框架,提出一种基于特征优化的轻量化SAR图像舰船目标检测网络。方法 改进模型并精简网络结构,提出一种数据驱动的目标分布聚类算法,学习SAR数据集的目标尺度、长宽比分布特性,用于网络参数设定;对卷积神经网络(convolutional neural network,CNN)提取的特征进行优化,提出一种双向高低层特征融合机制,将高层特征的语义信息通过语义聚合模块加成到低层特征中,在低层特征中提取特征平均图,处理后作为高层特征的注意力权重图对高层特征进行逐像素加权,将低层特征丰富的空间信息融入到高层特征中。结果 利用公开的SAR舰船目标检测数据集(SAR ship detection dataset,SSDD)进行实验,与原始的SSD模型相比,轻量化结构设计在不损失检测精度的前提下,样本测试时间仅为SSD的65%;双向特征融合机制将平均精确度(average precision,AP)值由77.93%提升至80.13%,训练和测试时间分别为SSD的64.1%和72.6%;与公开的基于深度学习的SAR舰船目标检测方法相比,本文方法在速度和精度上都取得了最佳性能,AP值较精度次优模型提升了1.23%,训练和测试时间较精度次优模型分别提升了559.34 ms和175.35 ms。结论 实验充分验证了本文所提模型的有效性,本文模型兼具检测速度与精度优势,具有很强的实用性。  相似文献   

9.
针对海洋原始图像与低秩和稀疏矩阵分解模型数据结构不一致的问题,本文提出一种新的基于矩阵分解的海洋SAR图像舰船检测方法.首先该方法需对结构化相似的海洋SAR图像进行重组:然后根据重组矩阵特性适应性设计一个分解精度更高、分解速度更快的新矩阵分解模型,并利用增广拉格朗日乘子法求解模型,在不依赖任何杂波模型和检测统计量的前提...  相似文献   

10.
针对目前目标检测技术中小目标检测困难问题,提出了一种基于SSD (Single Shot multibox Detector)改进的小目标检测算法Bi-SSD (Bi-directional Single Shot multibox Detector).该算法为SSD的浅层特征设计了小目标特征提升模块,在网络的分类和回归部分结合多尺度特征融合方法和BiFPN (Bi-directional Feature Pyramid Network)结构,设计了6尺度BiFPN分类回归子网络.实验结果表明,在PASCAL VOC和MS COCO目标检测数据集上Bi-SSD相比原始的SSD算法有更好的检测性能.其中VOC2007+2012上Bi-SSD算法的mAP指标达到了78.47%相较SSD算法提升了1.34%,在COCO2017上Bi-SSD算法的m AP达到26.4%提升了接近2.4%.  相似文献   

11.
合成孔径雷达(Synthetic Aperture Radar, SAR)船舶检测在海洋交通监控中发挥着重要作用,传统SAR目标检测算法一般利用目标与背景杂波之间的对比度差异进行检测,在近岸海域等复杂场景下检测效果较差。为了提高在复杂场景下的检测性能,本文提出一种基于改进Faster R-CNN的船舶检测方法,在分析不同特征分辨率对检测性能影响的基础上,结合VGG的思想与扩张卷积设计一个适用于SAR船舶目标检测的特征提取网络,以提升对小型船舶目标的检测能力。另外,根据sentinel-1A数据集中目标尺寸分布选取小尺寸anchor,并通过去除冗余anchor,将检测速度提升了一倍。在sentinel-1A数据集上的实验证明本文提出的算法能够快速、有效地从复杂场景SAR图像中检测出船舶目标。  相似文献   

12.
特征增强的SSD算法及其在目标检测中的应用   总被引:1,自引:0,他引:1  
针对多尺度单发射击检测(SSD)算法不同尺度的特征层很难进行融合互补问题,提出一种特征增强的SSD(FE-SSD)算法.首先对SSD算法的金字塔特征层中,每一尺度的特征进行尺寸不变的卷积操作;然后将卷积前与卷积后的特征进行特征融合操作,进而产生一组新的金字塔特征层;最后在新产生的金字塔特征层上执行目标的检测与定位任务.在PASCALVOC2007公共数据库上进行实验,当输入图像尺寸为300×300时,检测精度(mAP)达到78.0%,检测速度(FPS)达到82.5帧/s.此外,在拓展实验中,文中算法对图像中模糊目标的检测效果也优于SSD算法.  相似文献   

13.
拥挤行人检测是目前小目标检测领域的研究热点,针对拥挤行人检测场景中人物密集以及遮挡造成的漏检问题,提出一种改进SSD(single shot multibox detector)目标检测算法。将浅层Vgg(visual geometry group)网络平原结构使用多分支细化联合归一化(batch normalization,BN)操作增加分支结构,并重命名为多分支细化(multi-branch thinning)网络结构,使其可以细化浅层语义信息,提高网络泛化能力,充分表达行人信息;将改进后的Ghost模型替换多分支细化网络中的3×3卷积,利用Ghost模型中cheap_operation卷积降低因多分支结构增加的模型参数量,使用primary_conv提升浅层网络的特征提取能力,加强网络识别能力;使用二范式取代差值平方的形式改进Huber损失函数,增强网络训练的稳定性,使其达到较优的收敛效果。在Wider_Person拥挤行人检测数据集上的检测结果表明,提出的改进SSD目标检测算法MAP50达到72.9%,领先YOLO-X算法7.4个百分点,领先基线算法3.5个百分点,领先其他先进算法平均14.4个百分点,验证了该算法在行人检测中的可行性,满足遮挡行人场景的检测要求。  相似文献   

14.
目的 视频目标检测旨在序列图像中定位运动目标,并为各个目标分配指定的类别标签。视频目标检测存在目标模糊和多目标遮挡等问题,现有的大部分视频目标检测方法是在静态图像目标检测的基础上,通过考虑时空一致性来提高运动目标检测的准确率,但由于运动目标存在遮挡、模糊等现象,目前视频目标检测的鲁棒性不高。为此,本文提出了一种单阶段多框检测(single shot multibox detector,SSD)与时空特征融合的视频目标检测模型。方法 在单阶段目标检测的SSD模型框架下,利用光流网络估计当前帧与近邻帧之间的光流场,结合多个近邻帧的特征对当前帧的特征进行运动补偿,并利用特征金字塔网络提取多尺度特征用于检测不同尺寸的目标,最后通过高低层特征融合增强低层特征的语义信息。结果 实验结果表明,本文模型在ImageNet VID (Imagelvet for video object detetion)数据集上的mAP (mean average precision)为72.0%,相对于TCN (temporal convolutional networks)模型、TPN+LSTM (tubelet proposal network and long short term memory network)模型和SSD+孪生网络模型,分别提高了24.5%、3.6%和2.5%,在不同结构网络模型上的分离实验进一步验证了本文模型的有效性。结论 本文模型利用视频特有的时间相关性和空间相关性,通过时空特征融合提高了视频目标检测的准确率,较好地解决了视频目标检测中目标漏检和误检的问题。  相似文献   

15.
为充分利用深度特征的判别信息,提高船只分类准确率,提出利用低维度高判别的深度特征进行SAR船只分类的方法。采用ImageNet数据库预训练的VGG16卷积神经网络作为特征提取器,提取船只样本的深度特征;对深度特征进行t-SNE可视化,计算每类船只的类间分离度,选择对于每类船只样本来说类间分离度最大的深度特征;对选择的深度特征进行降维,采用基于KNN的级联二分类方法进行船只分类。利用高分辨率SAR船只数据集验证该方法,实验结果表明,相比传统的船只分类方法,其分类性能有明显提高。  相似文献   

16.
目的 特征融合是改善模糊图像、小目标以及受遮挡物体等目标检测困难的有效手段之一,为了更有效地利用特征融合来整合不同网络层次的特征信息,显著表达其中的重要特征,本文提出一种基于融合策略优选和双注意力机制的单阶段目标检测算法FDA-SSD(fusion double attention single shot multibox detector)。方法 设计融合策略优化选择方法,结合特征金字塔(feature pyramid network, FPN)来确定最优的多层特征图组合及融合过程,之后连接双注意力模块,通过对各个通道和空间特征的权重再分配,提升模型对通道特征和空间信息的敏感性,最终产生包含丰富语义信息和凸显重要特征的特征图组。结果 本文在公开数据集PASCAL VOC2007(pattern analysis, statistical modelling and computational learning visual object classes)和TGRS-HRRSD-Dataset(high resolution remote sensing detection)上进行对比...  相似文献   

17.
在空对地视角下图像的场景信息往往更加丰富,并且对目标的定位和分类有很强的辅助作用.传统的单发多框检测(SSD)网络在6个不同深度的特征图上对目标边框和类别独立地进行预测,忽略了深层次特征的场景信息对浅层细节信息的辅助作用.为有效地利用场景信息,首先在SSD网络的基础上分析不同尺度的特征图对目标检测的影响;然后结合特征金字塔和长短期记忆网络针对不同特征图建立场景辅助结构,增强特征图的表征能力.在自制的空对地数据集上进行实验,并与检测领域几种经典的网络进行对比,结果表明,文中算法能够在保证速度的前提下高效地对目标进行检测,比其他经典的网络有更高的检测精度.  相似文献   

18.
针对合成孔径雷达(SAR)图像目标识别问题,在卷积神经网的基础上,提出了一种新的识别框架。 该框架通过连接多个基本操作单元并以层次结构构造一个集特征提取和分类器训练于一体的端到端网络,同时利用深度网络的反向传播完成分类器对特征提取的反馈以改进特征的效果。 在 MSTAR开数据集上,该网络框架分类十类目标达到了98.61% 的精度,与其他方法相比,有效提高了SAR 图像目标的识别精度。 所提框架能有效分类SAR 图像目标,具有良好的识别精度,且具备模块化结构,无须复杂预处理,实现简单。  相似文献   

19.
水文泽  孙盛  余旭  邓少平 《计算机应用研究》2021,38(5):1572-1575,1580
针对合成孔径雷达图像的语义分割问题,构建了一个全新的TerraSAR-X语义分割数据集GDUT-Nansha。然后,为解决传统深度学习方法模型体积大,难以在样本数量偏少的合成孔径雷达图像数据集上应用的问题,对轻量化卷积神经网络ENet模型进行了分析和改造。提出了一种改进的轻量化卷积神经网络模型(revised weighted loss eNet,RWL-ENet);针对合成孔径雷达图像数据集样本不平衡问题,使用了带有权重的损失函数。通过和其他经典卷积神经网络语义分割模型的对比实验,验证了新数据集的可靠性;同时,在参数量和模型体积远远小于其他网络模型的前提下,RWL-ENet模型在像素精度、平均像素精度、平均交并比三个定量指标上分别达到了0.884、0.804和0.645。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号