共查询到20条相似文献,搜索用时 78 毫秒
1.
针对单次多盒检测算法(SSD)对复杂背景下合成孔径雷达(SAR)图像舰船目标的检测容易出现误检或漏检情况,提出一种基于融合注意力机制与改进的SSD算法的目标检测方法。首先在SSD算法上引入ResNet网络并进行改进,以提供丰富的语义信息和细节信息,提高算法的鲁棒性;其次融合通道和空间注意力增强对舰船目标的辨认能力,抑制海杂波等干扰信息;同时改进损失函数来解决舰船密集分布时的漏检问题,提高网络训练效果。数据集上的实验表明,该方法平均准确率(mAP)为87.6%,比SSD算法提高了4.2个百分点,目标的漏检和误检明显减少。相比SSD算法,该算法对复杂背景下的舰船目标有较好的辨别能力和鲁棒性,抗干扰能力有所提升。 相似文献
2.
针对合成孔径雷达(SAR)图像中舰船目标稀疏的特点,提出一种基于级联卷积神经网络(CNN)的SAR图像舰船目标检测方法.将候选区域提取方法BING与目标检测方法Fast R-CNN相结合,并采用级联CNN设计,可同时兼顾舰船检测的准确率和速度.首先,针对SAR图像中相干斑噪声影响梯度检测的问题,在原有梯度算子的基础上增加平滑算子,并对图像尺寸个数和候选框个数进行适应性改进,使其提取到的候选窗口更快更准;然后,设计级联结构的Fast R-CNN检测框架,前端简单的CNN负责排除明显的非目标区域,后端复杂的CNN对高概率候选区域进行分类和位置回归,整个结构可以保证快速准确地对舰船这种稀疏目标进行检测;最后,设计一种联合优化方法对多任务的目标函数进行优化,使其更快更好地收敛.在SAR图像舰船检测数据集SSDD上的实验结果显示,所提出的方法相比于原始Fast R-CNN和Faster R-CNN检测方法,检测精度从65.2%和70.1%提高到73.5%,每张图像的处理时间从2235ms和198ms下降到113ms. 相似文献
4.
针对合成孔径雷达图像目标在背景复杂、场景较大、干扰杂波较多情况下检测困难的问题,设计一种层数较少的卷积神经网络,在完备数据集验证其特征提取效果后,作为基础特征提取网络使用。在训练数据集中补充复杂的大场景下目标训练样本。同时设计一种多层次卷积特征融合网络,增强对大场景下小目标的检测能力。通过对候选区域网络和目标检测网络近似联合训练后,得到一个完整的可用于不同的复杂大场景下SAR图像目标检测的模型。实验结果表明,该方法在SAR图像目标检测方面具有较好的效果,在测试数据集中具有0.86的AP值。 相似文献
5.
针对SSD(single shot multibox detector,单步多盒检测)算法在车辆的自动紧急制动(AEB)中对远方目标检测效果差、检测速度慢、对硬件资源需求高的问题,提出了一种基于SSD的改进算法.首先用MobileNetv2替换SSD中的AGG-16作为检测网络,以减少参数数量和计算量,降低网络对硬件性... 相似文献
6.
针对当前基于深度学习的目标检测算法采取的特征图融合方式存在缺陷,算法普遍不能很好地应对尺度变化等问题,提出一种跨深度卷积特征增强的目标检测算法CDC-YOLO。对YOLOv3算法进行改进,针对多尺度预测层各自的特点采用与之适应的特征增强模块,采用多通道的跨深度的卷积核并结合空洞卷积并行地提取特征,最终级联起来。该模块能充分利用多尺度多深度特征,形成统一的多尺度特征表达。在VOC2007test上的实验结果表明,提出算法的mAP (均值平均精度)高达82.33%,比原始YOLOv3提升了约2%,且对尺度变化大的物体鲁棒性更强。 相似文献
7.
8.
目的 利用合成孔径雷达(synthetic aperture radar,SAR)图像进行舰船目标检测是实施海洋监视的重要手段。基于深度学习的目标检测模型在自然图像目标检测任务中取得了巨大成功,但由于自然图像与SAR图像的差异,不能将其直接迁移到SAR图像目标检测中。针对SAR图像目标检测实际应用中对速度和精度的需求,借鉴经典的单阶段目标检测模型(single shot detector,SSD)框架,提出一种基于特征优化的轻量化SAR图像舰船目标检测网络。方法 改进模型并精简网络结构,提出一种数据驱动的目标分布聚类算法,学习SAR数据集的目标尺度、长宽比分布特性,用于网络参数设定;对卷积神经网络(convolutional neural network,CNN)提取的特征进行优化,提出一种双向高低层特征融合机制,将高层特征的语义信息通过语义聚合模块加成到低层特征中,在低层特征中提取特征平均图,处理后作为高层特征的注意力权重图对高层特征进行逐像素加权,将低层特征丰富的空间信息融入到高层特征中。结果 利用公开的SAR舰船目标检测数据集(SAR ship detection dataset,SSDD)进行实验,与原始的SSD模型相比,轻量化结构设计在不损失检测精度的前提下,样本测试时间仅为SSD的65%;双向特征融合机制将平均精确度(average precision,AP)值由77.93%提升至80.13%,训练和测试时间分别为SSD的64.1%和72.6%;与公开的基于深度学习的SAR舰船目标检测方法相比,本文方法在速度和精度上都取得了最佳性能,AP值较精度次优模型提升了1.23%,训练和测试时间较精度次优模型分别提升了559.34 ms和175.35 ms。结论 实验充分验证了本文所提模型的有效性,本文模型兼具检测速度与精度优势,具有很强的实用性。 相似文献
9.
针对目前目标检测技术中小目标检测困难问题,提出了一种基于SSD (Single Shot multibox Detector)改进的小目标检测算法Bi-SSD (Bi-directional Single Shot multibox Detector).该算法为SSD的浅层特征设计了小目标特征提升模块,在网络的分类和回归部分结合多尺度特征融合方法和BiFPN (Bi-directional Feature Pyramid Network)结构,设计了6尺度BiFPN分类回归子网络.实验结果表明,在PASCAL VOC和MS COCO目标检测数据集上Bi-SSD相比原始的SSD算法有更好的检测性能.其中VOC2007+2012上Bi-SSD算法的mAP指标达到了78.47%相较SSD算法提升了1.34%,在COCO2017上Bi-SSD算法的m AP达到26.4%提升了接近2.4%. 相似文献
10.
目的 基于清晰图像训练的深度神经网络检测模型因为成像差异导致的域偏移问题使其难以直接泛化到水下场景。为了有效解决清晰图像和水下图像的特征偏移问题,提出一种即插即用的特征增强模块(feature de-drifting module Unet, FDM-Unet)。方法 首先提出一种基于成像模型的水下图像合成方法,从真实水下图像中估计色偏颜色和亮度,从清晰图像估计得到场景深度信息,根据改进的光照散射模型将清晰图像合成为具有真实感的水下图像。然后,借鉴U-Net结构,设计了一个轻量的特征增强模块FDM-Unet。在清晰图像和对应的合成水下图像对上,采用常见的清晰图像上预训练的检测器,提取它们对应的浅层特征,将水下图像对应的退化浅层特征输入FDM-Unet进行增强,并将增强之后的特征与清晰图像对应的特征计算均方误差(mean-square error, MSE)损失,从而监督FDM-Unet进行训练。最后,将训练好的FDM-Unet直接插入上述预训练的检测器的浅层位置,不需要对网络进行重新训练或微调,即可以直接处理水下图像目标检测。结果 实验结果表明,FDM-Unet在PASCAL VOC ... 相似文献
11.
针对复杂背景下小目标特征经多次卷积被背景噪声淹没导致的检测精度低的问题,提出一种增强弱特征表达的一阶段轻量级小目标检测算法SA-YOLO.首先,用改进的ShuffleNetv2网络构建骨干网络,通过嵌入SE注意力模块和Inception结构,提升网络在复杂背景下的特征提取能力,有效地抑制背景噪声,充分提取弱特征;其次,在颈部网络,采用新的特征融合模块,以含有弱特征较多的低层级特征块的空间位置信息对高层级特征进行权重调整,提高不同层级的特征融合利用率,减少小目标的特征损失;最后,在头部网络,用解耦的检测头替换原YOLO耦合的检测头,解耦分类任务和回归任务,提高弱特征的解码能力,增强小目标检测的性能.在公开数据集COCO2017上进行实验,结果表明,SA-YOLO参数量仅有1.14M,小目标平均检测召回率$\rm AR_S$达到31.6%.同时,将所提出算法与近几年主流算法进行对比,结果表明,所提出算法在小目标检测方面具有较强的竞争力. 相似文献
12.
13.
由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积和特征融合的方法。先采用反卷积作用于浅层特征层,增大特征图分辨率,然后将SSD模型中卷积层conv11_2的特征图上采样,拼接得到新的特征层,最后将新的特征层与SSD模型中固有的4个尺度的特征层进行融合。通过将改进后的方法与VOC2007数据集和KITTI车辆检测数据集上的SSD和DSSD方法进行比较,结果表明:该方法降低了小目标的漏检率,并提升整体目标的平均检测准确率。 相似文献
14.
15.
一般情况下分数阶微分模板一经确定,再用其进行滤波时并不随图像的局部信息而变化,它不具有灵活性。针对分数阶微分模板滤波的这种局限性,提出了一种基于局部特征的分数阶微分图像增强的方法。在3×3对称分数阶微分模板的基础上找出与拉普拉斯模板的关系,从而得到加权的拉普拉斯模板表示的分数阶微分模板;根据图像的局部均值与标准差的关系对加权的拉普拉斯模板进一步改进,得到基于局部特征的分数阶微分图像增强的方法,它使分数阶图像增强模板能够根据局部特征灵活地进行滤波。将其与其他的图像增强算法比较,实验证明基于局部特征的分数阶微分图像增强算法能获得更好效果。 相似文献
16.
基于边缘检测的Retinex图像增强算法 总被引:1,自引:0,他引:1
针对消除背景光照对图像的影响时出现的细节弱化、色彩失真的问题,提出了一种基于边缘检测的Retinex彩色图像增强算法。根据人类视觉特性从图像中提取亮度分量并检测边缘信息,在平滑点和边缘点处采用不同的模板估计背景光照,以避免强边缘处的光晕现象;通过调整图像中的背景光照比例提升局部对比度,并根据反射图像直方图自适应调整全局对比度;利用R、G、B通道及亮度分量的等价变换进行色彩恢复,以保证增强前后图像色调一致。实验结果表明,增强后的图像标准差提升了19.34%,信息熵增大了13.18%。 相似文献
17.
针对Siamese网络忽略不同层级差异特征之间的关联导致检测精度有限的问题,提出了基于差异特征融合的无监督SAR(synthetic aperture radar)图像变化检测算法。首先,利用对数比值算子和均值比值算子构建两幅信息互补的差异图,通过引入能量矩阵对差异图进行像素级融合以提高其信噪比;其次,设计了一种基于差异特征融合的Siamese网络(difference feature fusion for Siamese,DFF-Siamese),该网络能够通过差异特征提取模块在决策层综合衡量不同层级特征之间的差异程度,从而有效增强网络的特征表达能力;最后,利用模糊聚类算法对融合结果进行分类构建“伪标签”,用于训练DFF-Siamese网络以实现高精度SAR图像变化检测。在3组真实遥感数据集上的实验结果表明,本文提出的算法与其他对比算法相比具有更高的检测精度和更低的错误率。 相似文献
18.
针对水下图像细节模糊和色彩失真严重的问题,提出一种基于编码解码结构的动态异构特征融合水下图像增强网络.首先,设计异构特征融合模块,将不同级别与不同层次的特征进行融合,提升网络对细节信息和语义信息的整体感知能力;然后,设计新型特征注意力机制,改进传统通道注意力机制,并将改进后的通道注意力与像素注意力机制加入异构特征融合过程,加强网络提取不同浑浊度像素特征的能力;接着,设计动态特征增强模块,自适应扩展感受野以提升网络对图像畸变景物的适应力和模型转换能力,加强网络对感兴趣区域的学习;最后,设计色彩损失函数,并联合最小化绝对误差损失与结构相似性损失,在保持图像纹理的基础上纠正色偏.实验结果表明,所提出算法可有效提升网络的特征提取能力,降低水下图像的雾度效应,提升图像的清晰度和色彩饱和度. 相似文献
19.
针对传统进化算法在SAR图像变化检测时,容易陷入局部最优,收敛速度慢,耗时过长,为了解决这些问题,提出了一种无监督的多智能体遗传SAR图像变化检测方法。利用对数比值法对预处理后的图像构造差异影像,并对差异影像进行中值滤波处理,把它的灰度值作为输入信息,通过多智能体遗传算法搜索全局阈值,根据全局阈值得到变化检测结果。仿真结果表明,该算法与GA、ICSA相比,分类准确,收敛快速,效率更高。 相似文献
20.
低对比度复杂背景下的小目标检测一直是研究的热点和难点,检测的困难主要在于背景噪声的复杂和目标的微弱.分析和研究了形态膨胀算法均值漂移(Mean Shift)算法:形态膨胀算法对目标进行有效增强,而均值漂移算法改善目标与背景对比度,有利于有效分割目标.最后实现了基于该方法的两种不同情景下的小目标的检测,实验表明该算法具有较好的有效性和鲁棒性.而且,该方法在最终目标选取采用了自适应阈值方法.实验分析表明:算法基本上是定点运算,效率较高,易于实时硬件实现. 相似文献