首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silver nanowire (AgNWs) inks for inkjet printing were prepared and the effects of the solvent system, wetting agent, AgNWs suspension on the viscosity, surface tension, contact angle between ink droplet and poly(ethylene) terephthalate (PET) surface, and pH value of AgNWs ink were discussed. Further, AgNWs flexible transparent conductive films were fabricated by using inkjet printing process on the PET substrate, and the effects of the number printing layer, heat treatment temperature, drop frequency, and number of nozzle on the microstructures and photoelectric properties of AgNWs films were investigated in detail. The experimental results demonstrated that the 14-layer AgNWs printed film heated at 60 °C and 70 °C had an average sheet resistance of 13 Ω∙sq−1 and 23 Ω∙sq−1 and average transparency of 81.9% and 83.1%, respectively, and displayed good photoelectric performance when the inkjet printing parameters were set to the voltage of 20 V, number of nozzles of 16, drop frequency of 7000 Hz, droplet spacing of 15 μm, PET substrate temperatures of 40 °C and nozzles of 35 °C during printing, and heat treatment at 60 °C for 20 min. The accumulation and overflow of AgNWs at the edges of the linear pattern were observed, which resulted in a decrease in printing accuracy. We successfully printed the heart-shaped pattern and then demonstrated that it could work well. This showed that the well-defined pattern with good photoelectric properties can be obtained by using an inkjet printing process with silver nanowires ink as inkjet material.  相似文献   

2.
An unusual strategy was designed to fabricate conductive patterns with high reproducibility for flexible electronics by drop or fit-to-flow method. Silver nanowire (SNW) ink with surface tension of 36.9 mN/m and viscosity of 13.8 mPa s at 20°C was prepared and characterized using a field emission transmission electron microscope, X-ray diffractometer, thermogravimetric analyzer, scanning electron microscope, and four-point probe. Polydimethylsiloxane (PDMS) pattern as template was fabricated by spin coating (500 rpm), baking at 80°C for 3 h, and laser cutting. The prepared SNW ink can flow along the trench of the PDMS pattern spontaneously, especially after plasma treatment with oxygen, and show a low resistivity of 12.9 μΩ cm after sintering at 125°C for 30 min. In addition, an antenna pattern was also prepared to prove the feasibility of the approach.  相似文献   

3.
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.  相似文献   

4.
肖志坚  屈贞财 《化工进展》2015,34(8):3105-3109
以水合肼(N2H4·H2O)为还原剂,聚乙烯吡咯烷酮(PVP)为保护剂,通过液相还原硝酸银溶液制备纳米银粉。以制备的银粉纳米粒子为导电填料,以水性聚氨酯丙烯酸树脂为连接料,以乙醇和去离子水为溶剂,并辅以其他助剂,制备出水性UV导电油墨。经TEM表征和马尔文粒度仪测试,纳米银粉的平均粒径为5nm。最后用300目的涤纶丝网版在铜版纸基上印刷,在105℃下处理15min,用UV固化干燥后,测试墨层的电导率和附着力,并用SEM表征了墨层烧结后的形貌特征,结果表明:研制的用于柔性基材的水性UV导电油墨经190℃低温烧结2min,电导率为1.84×104S/m,经3M胶带撕拉,墨层不发生脱落现象。  相似文献   

5.
羧甲基纤维素钠对纳米银导电墨水性能的影响   总被引:1,自引:0,他引:1  
通过液相化学还原法,以聚乙烯吡咯烷酮(PVP)为保护剂,甲醛为还原剂制备得到粒径为70 nm左右的纳米银溶胶。离心洗涤得到高纯度和高浓度的纳米银水溶胶,添加羧甲基纤维素钠(CMC)及其它助剂后,在超声处理下获得了水基导电墨水。该墨水的Zeta电位值为(-42.8±0.96) mV,表明其具有较高稳定性。用热泡式按需喷墨打印机,在相纸基材上印制导电图案,并在150 ℃下加热处理30 min后,其方块电阻值由处理前的38.48 kΩ骤降至0.87 Ω。撕拉试验表明,加入CMC后的纳米银导电墨水,在基材上有很好的附着力。  相似文献   

6.
The need for more sustainable printed electronics has emerged in the past years. Due to this, the use of nanocellulose (NC) extracted from cellulose has recently been demonstrated to provide interesting materials such as functional inks and transparent flexible films due to its properties. Its high specific surface area together with the high content of reactive hydroxyl groups provide a highly tailorable surface chemistry with applications in ink formulations as a stabilizing, capping, binding and templating agent. Moreover, NC mechanical, physical and thermal properties (high strength, low porosity and high thermal stability, respectively) provide an excellent alternative for the currently used plastic films. In this work, we present a process for the production of water-based conductive inks that uses NC both as a template for silver nanoparticles (Ag NPs) formation and as an ink additive for ink formulation. The new inks present an electrical conductivity up to 2 × 106 S/m, which is in the range of current commercially available conductive inks. Finally, the new Ag NP/NC-based conductive inks have been tested to fabricate NFC antennas by screen-printing onto NC-coated paper, demonstrating to be operative.  相似文献   

7.
Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (−10 °C cryogenic plate, 40–80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts’ proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks.  相似文献   

8.
将丙烯酸树脂和饱和聚酯树脂在高沸点混合溶剂中完全溶解制成粘料,由此粘料加入导电银粉和其他配合剂混合研磨制成导电油墨。讨论了导电银粉的结构、粒径、填充量,固化性能,助剂,溶剂对树脂的溶解性等对导电油墨性能的影响。  相似文献   

9.
The silver nanoparticles are gaining extensive attention due to their tremendous applications in conductive field. In this article, we reported a green method of preparing silver nanoparticles (AgNPs) with bagasse pulp extract acting as reducing agents. In this article, ultrasonic extraction method was adopted. This extraction method has the advantages of simple operation and less impurity content in the extract. Silver nitrate (AgNO3) solution, bagasse extract, and polyvinyl pyrrolidone (PVP) were used as the silver precursor, reducing agent, and protection agent, respectively. Next, hyperbranched polyurethane acrylate (HPUA) as waterborne resin was mixed with AgNPs to prepare UV‐curable conductive ink. The UV‐curable conductive ink synthesized by the AgNPs showed high conductivity, and the obtained conductive ink had very low resistance (1.06 Ω) and resistivity (2.6 × 10?5 Ω·m), good electronic stability, showing the great advantage in the field of UV‐curable conductive ink. In addition, we tested the AgNPs conductive ink of tearing resistance, rubbing fastness, and bending strength. The results showed the nanosilver conductive ink had good mechanical properties. J. VINYL ADDIT. TECHNOL., 26:90–96, 2020. © 2019 Society of Plastics Engineers  相似文献   

10.
Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are two cytokines involved in the perpetuation of the chronic inflammation state characterizing rheumatoid arthritis (RA). Significant advances in the treatment of this pathology have been made over the past ten years, partially through the development of anti-TNF and anti-IL-1 therapies. However, major side effects still persist and new alternative therapies should be considered. The formulation of the micro-immunotherapy medicine (MIM) 2LARTH® uses ultra-low doses (ULD) of TNF-α, IL-1β, and IL-2, in association with other immune factors, to gently restore the body’s homeostasis. The first part of this review aims at delineating the pivotal roles played by IL-1β and TNF-α in RA physiopathology, leading to the development of anti-TNF and anti-IL-1 therapeutic agents. In a second part, an emphasis will be made on explaining the rationale of using multiple therapeutic targets, including both IL-1β and TNF-α in 2LARTH® medicine. Particular attention will be paid to the ULD of those two main pro-inflammatory factors in order to counteract their overexpression through the lens of their molecular implication in RA pathogenesis.  相似文献   

11.
A facile solvothermal method to synthesize aluminum-doped ceria-zirconia (Ce0.5Zr0.5-xAlxO2-x/2, x = 0.1 to 0.4) solid solutions was carried out using Ce(NH4)2(NO3)6, Zr(NO3)3·2H2O Al(NO3)3·9H2O, and NH4OH as the starting materials at 200°C for 24 h. The obtained solid solutions from the solvothermal reaction were calcined at 1,000°C for 20 h in air atmosphere to evaluate the thermal stability. The synthesized Ce0.5Zr0.3Al0.2O1.9 particle was characterized for the oxygen storage capacity (OSC) in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy, and the Brunauer-Emmet-Teller (BET) technique were employed. The OSC values of all samples were measured at 600°C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9 solid solutions calcined at 1,000°C for 20 h with a BET surface area of 18 m2 g−1 exhibited a considerably high OSC of 427 μmol-O g−1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2 and Ce0.5Zr0.5O2. The incorporation of aluminum ion in the lattice of ceria-based catalyst greatly enhanced the thermal stability and OSC.  相似文献   

12.
Prognosis of patients with myocardial infarction is detrimentally affected by comorbidities like diabetes mellitus. In the experimental setting, not only diabetes mellitus but also acute hyperglycemia is shown to hamper cardioprotective properties by multiple pharmacological agents. For Levosimendan-induced postconditioning, a strong infarct size reducing effect is demonstrated in healthy myocardium. However, acute hyperglycemia is suggested to block this protective effect. In the present study, we investigated whether (1) Levosimendan-induced postconditioning exerts a concentration-dependent effect under hyperglycemic conditions and (2) whether a combination with the mitochondrial permeability transition pore (mPTP) blocker cyclosporine A (CsA) restores the cardioprotective properties of Levosimendan under hyperglycemia. For this experimental investigation, hearts of male Wistar rats were randomized and mounted onto a Langendorff system, perfused with Krebs-Henseleit buffer with a constant pressure of 80 mmHg. All isolated hearts were subjected to 33 min of global ischemia and 60 min of reperfusion under hyperglycemic conditions. (1) Hearts were perfused with various concentrations of Levosimendan (Lev) (0.3–10 μM) for 10 min at the onset of reperfusion, in order to investigate a concentration–response relationship. In the second set of experiments (2), 0.3 μM Levosimendan was administered in combination with the mPTP blocker CsA, to elucidate the underlying mechanism of blocked cardioprotection under hyperglycemia. Infarct size was determined by tetrazolium chloride (TTC) staining. (1) Control (Con) hearts showed an infarct size of 52 ± 12%. None of the administered Levosimendan concentrations reduced the infarct size (Lev0.3: 49 ± 9%; Lev1: 57 ± 9%; Lev3: 47 ± 11%; Lev10: 50 ± 7%; all ns vs. Con). (2) Infarct size of Con and Lev0.3 hearts were 53 ± 4% and 56 ± 2%, respectively. CsA alone had no effect on infarct size (CsA: 50 ± 10%; ns vs. Con). The combination of Lev0.3 and CsA (Lev0.3 ± CsA) induced a significant infarct size reduction compared to Lev0.3 (Lev0.3+CsA: 35 ± 4%; p < 0.05 vs. Lev0.3). We demonstrated that (1) hyperglycemia blocks the infarct size reducing effects of Levosimendan-induced postconditioning and cannot be overcome by an increased concentration. (2) Furthermore, cardioprotection under hyperglycemia can be restored by combining Levosimendan and the mPTP blocker CsA.  相似文献   

13.
Silver nanoparticle suspensions were synthesized by chemical reduction method using a formaldehyde reductant. Polyvinyl pyrrolidone (PVP) of two different molecular weights (M.W.=8,000 and 29,000) was used as a stabilizer for the suspensions. PVP of a smaller molecular weight could produce silver suspensions of nanoparticle size around 20 nm. Water-based conductive silver inks with different silver concentrations were prepared and tested for suitability for screen printing. We have successfully printed silver metal lines on glass substrates using a 400 mesh screen-mask with 60wt.% silver ink prepared in this study. Curing at a low temperature of 200 °C for an hour was found sufficient to reach the lowest resistivity value with the synthesized ink. For a line with a width and thickness of 0.5 mm and 2.12 μm, respectively, it exhibited a resistivity of 3.3×10−5 Ω·cm, which could serve as conducting lines for various electronic applications.  相似文献   

14.
邱欣斌  刘飞翔  陈国华 《化工进展》2018,37(4):1480-1488
石墨烯因具备着超高的电荷迁移率,近年来在导电油墨领域备受关注,它赋予了石墨烯导电油墨优异的导电性能、耐腐蚀性以及耐候性等优点。本文通过查阅文献的方式,简要介绍了导电相石墨烯的制备方法及导电油墨的导电机理,着重介绍了石墨烯导电油墨的制备工艺,其中包含氧化还原法、机械剥离法、液相剥离法等制备工艺。综述了石墨烯导电油墨在能源、电子器件、功能传感器方面的应用。提出了石墨烯导电油墨未来研究的关键性问题,如石墨烯导电油墨分散稳定性问题、配方环保问题、氧化石墨烯(GO)导电油墨的还原技术问题等。最后提出,石墨烯导电油墨应朝着低成本、绿色化、产业化的方向发展。  相似文献   

15.
The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW) powders by the supercritical antisolvent precipitation process (SAS), and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15–35 MPa), precipitation temperature (45–65 °C), drug solution flow rates (3–7 mL/min) and drug concentrations (10–30 mg/mL) were investigated. The nanospheres obtained with mean diameters ranged from 77.5 to 131.8 nm. The processed and unprocessed GTW were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermal gravimetric analysis. The present study was designed to investigate the beneficial effect of the GTW nanoparticles on adjuvant-induced arthritis in albino rats. The processed and unprocessed GTW were tested against Freund’s complete adjuvant-induced arthritis in rats. Blood samples were collected for the estimation of interleukins (IL-1α, IL-1β) and tumor necrosis factor-α (TNF-α). It was concluded that physicochemical properties and anti-inflammatory activity of GTW nanoparticles could be improved by physical modification, such as particle size reduction using supercritical antisolvent (SAS) process. Further, SAS process was a powerful methodology for improving the physicochemical properties and anti-inflammatory activity of GTW.  相似文献   

16.
A series of dehydroabietic acid (DHAA) acyl-thiourea derivatives were designed and synthesized as potent antitumor agents. The in vitro pharmacological screening results revealed that the target compounds exhibited potent cytotoxicity against HeLa, SK-OV-3 and MGC-803 tumor cell lines, while they showed lower cytotoxicity against HL-7702 normal human river cells. Compound 9n (IC50 = 6.58 ± 1.11 μM) exhibited the best antitumor activity against the HeLa cell line and even displayed more potent inhibitory activity than commercial antitumor drug 5-FU (IC50 = 36.58 ± 1.55 μM). The mechanism of representative compound 9n was then studied by acridine orange/ethidium bromide staining, Hoechst 33,258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay and flow cytometry, which illustrated that this compound could induce apoptosis in HeLa cells. Cell cycle analysis indicated that compound 9n mainly arrested HeLa cells in the S phase stage. Further investigation demonstrated that compound 9n induced apoptosis of HeLa cells through a mitochondrial pathway.  相似文献   

17.
N-(4-((3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)selanyl)phenyl)acetamide (5), C19H15NO3Se, was prepared in two steps from 4,4′-diselanediyldianiline (3) via reduction and subsequent nucleophilic reaction with 2-methyl-3-bromo-1,4-naphthalenedione, followed by acetylation with acetic anhydride. The cytotoxicity was estimated against 158N and 158JP oligodendrocytes and the redox profile was also evaluated using different in vitro assays. The technique of single-crystal X-ray diffraction is used to confirm the structure of compound 5. The enantiopure 5 crystallizes in space group P21 with Flack parameter 0.017 (8), exhibiting a chiral layered absolute structure. Molecular structural studies showed that the crystal structure is foremost stabilized by N-H···O and relatively weak C-H···O contacts between molecules, and additionally stabilized by weak C-H···π and Se···N interactions. Hirshfeld surface analysis is used to quantitatively investigate the noncovalent interactions that stabilize crystal packing. Framework energy diagrams were used to graphically represent the stabilizing interaction energies for crystal packing. The analysis of the energy framework shows that the interactions energies of and C-H···π and C-O···π are primarily dispersive and are the crystal’s main important forces. Density functional theory (DFT) calculations were used to determine the compound’s stability, chemical reactivity, and other parameters by determining the HOMO-LUMO energy differences. The determination of its optimized surface of the molecular electrostatic potential (MEP) was also carried out. This study was conducted to demonstrate both the electron-rich and electron-poor sites.  相似文献   

18.
It is of great importance to construct a stable superhydrophobic surface with low sliding angle (SA) for various applications. We used hydrophobic carbon nanotubes (CNTs) to construct the superhydrophobic hierarchical architecture of CNTs on silicon micropillar array (CNTs/Si-μp), which have a large contact angle of 153° to 155° and an ultralow SA of 3° to 5°. Small water droplets with a volume larger than 0.3 μL can slide on the CNTs/Si-μp with a tilted angle of approximately 5°. The CNTs growing on planar Si wafer lose their superhydrophobic properties after exposing to tiny water droplets. However, the CNTs/Si-μp still show superhydrophobic properties even after wetting using tiny water droplets. The CNTs/Si-μp still have a hierarchical structure after wetting, resulting in a stable superhydrophobic surface.  相似文献   

19.
Disposition of amyloid β (Aβ) into the perivascular space of the cerebral cortex has been recently suggested as a major source of its clearance, and its disturbance may be involved in the pathogenesis of cerebral amyloid angiopathy and Alzheimer’s disease. Here, we explored the in vivo dynamics of Aβ in the perivascular space of anesthetized mice. Live images were obtained with two-photon microscopy through a closed cranial window. Either fluorescent-dye-labeled Aβ oligomers prepared freshly or Aβ fibrils after 6 days of incubation at 37 °C were placed over the cerebral cortex. Accumulation of Aβ was observed in the localized perivascular space of the penetrating arteries and veins. Transportation of the accumulated Aβ along the vessels was slow and associated with changes in shape. Aβ oligomers were transported smoothly and separately, whereas Aβ fibrils formed a mass and moved slowly. Parenchymal accumulation of Aβ oligomers, as well as Aβ fibrils along capillaries, increased gradually. In conclusion, we confirmed Aβ transportation between the cortical surface and the deeper parenchyma through the perivascular space that may be affected by the peptide polymerization. Facilitation of Aβ excretion through the system can be a key target in treating Alzheimer’s disease.  相似文献   

20.
The neuropathological substrate of dementia with Lewy bodies (DLB) is defined by the inextricable cross-seeding accretion of amyloid-β (Aβ) and α-synuclein (α-syn)-laden deposits in cholinergic neurons. The recent revelation that neuropeptide kisspeptin-10 (KP-10) is able to mitigate Aβ toxicity via an extracellular binding mechanism may provide a new horizon for innovative drug design endeavors. Considering the sequence similarities between α-syn’s non-amyloid-β component (NAC) and Aβ’s C-terminus, we hypothesized that KP-10 would enhance cholinergic neuronal resistance against α-syn’s deleterious consequences through preferential binding. Here, human cholinergic SH-SY5Y cells were transiently transformed to upsurge the mRNA expression of α-syn while α-syn-mediated cholinergic toxicity was quantified utilizing a standardized viability-based assay. Remarkably, the E46K mutant α-syn displayed elevated α-syn mRNA levels, which subsequently induced more cellular toxicity compared with the wild-type α-syn in choline acetyltransferase (ChAT)-positive cholinergic neurons. Treatment with a high concentration of KP-10 (10 µM) further decreased cholinergic cell viability, while low concentrations of KP-10 (0.01–1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated toxicity. Correlating with the in vitro observations are approximations from in silico algorithms, which inferred that KP-10 binds favorably to the C-terminal residues of wild-type and E46K mutant α-syn with CDOCKER energy scores of −118.049 kcal/mol and −114.869 kcal/mol, respectively. Over the course of 50 ns simulation time, explicit-solvent molecular dynamics conjointly revealed that the docked complexes were relatively stable despite small-scale fluctuations upon assembly. Taken together, our findings insinuate that KP-10 may serve as a novel therapeutic scaffold with far-reaching implications for the conceptualization of α-syn-based treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号