首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以玉米淀粉(A型)、马铃薯淀粉(B型)和豌豆淀粉(C型)等3种典型晶型淀粉为对象,分析比较过热蒸汽短时间处理改性淀粉的颗粒形貌、粒径、热焓特性、糊化特性及结晶特性。结果表明,通过改性处理,3种晶型淀粉相对结晶度均极显著降低(P0.01),玉米淀粉晶型由A型转变为A+V型,马铃薯淀粉、豌豆淀粉的晶型分别由B型、C型转变为A型;改性的玉米、马铃薯、豌豆淀粉颗粒发生膨胀,粒径极显著增大(P0.01),糊化温度升高,糊化焓极显著减小(P0.01),淀粉糊化的稳定性和抗剪切性能明显增强。3种改性淀粉的理化性质存在较大差异。相对结晶度和晶型是导致改性淀粉性质差异的主要原因。  相似文献   

2.
目的 研究酶解处理、湿热处理和湿热复合酶解处理对糯米粉体外消化特性和血糖生成指数(glycemic index, GI)的影响。方法 采用体外消化法测定了不同处理糯米粉的水解度和血糖生成指数值, 并通过X-射线衍射和激光共焦拉曼光谱实验测定了不同处理糯米的淀粉晶体结构。结果 3种处理的水解度和抗性淀粉(resistant starch, RS)相对含量增加, 慢消化淀粉(slowly digestible starch, SDS)相对含量降低; 其中湿热复合酶解处理条件下, RS相对含量最高, 为71.31%; 酶解处理条件下, RS相对含量最低, 为67.66%。酶解处理、湿热处理和湿热复合酶解处理的GI值分别为79.1、76.0和70.6。3种处理后糯米淀粉的晶体结构发生改变, 3种处理均使分子短程有序度与结晶度增加, 其中湿热复合酶解处理条件下, 结晶度最高, 为34.41%。 结论 湿热复合酶解处理后的糯米粉抗消化特性增强且GI值降低, 湿热复合酶解工艺可能通过影响糯米粉的体外消化率来降低GI值。  相似文献   

3.
比较玉米淀粉(A型)、马铃薯淀粉(B型)和锥栗淀粉(C型)韧化处理前后的颗粒形貌、结晶特性和热特性变化,探究韧化处理对3种晶型淀粉消化特性的作用机理。SEM图片显示,韧化处理后玉米淀粉表面出现凹坑,马铃薯淀粉表面出现少许裂痕,锥栗淀粉表面变得光滑,褶皱消失;XRD和FTIR分析表明,3种淀粉经韧化后晶型未有改变,但结晶度均显著提高,分子短程有序性增加,晶体结构更趋稳定;DSC分析表明,韧化处理后3种晶型淀粉的糊化温度显著升高,热焓值无显著变化;韧化处理对不同晶型淀粉消化特性的影响存在差异,3种淀粉经韧化后RS含量均显著增加,水解指数HI和血糖指数GI显著降低;玉米淀粉韧化后RDS含量显著增加,SDS含量显著减少,水解平衡浓度由84.81%降至76.79%;马铃薯淀粉中SDS和RDS含量均显著减少,水解平衡浓度由30.59%降至21.84%;韧化处理对锥栗淀粉的RS、SDS、RDS含量及水解平衡浓度变化影响较小。  相似文献   

4.
以从糯麦淀粉中分离所得的A-、B-型淀粉为研究对象,并以此作为受体,高直链玉米淀粉为供体,利用普鲁兰酶和分支酶协同处理对糯麦淀粉进行改性,测定其颗粒形态、结晶结构以及表观直链淀粉含量、溶解度、膨胀力等理化性质,并对其消化特性进行考察。结果表明:采用普鲁兰酶和分支酶两种复合酶法改性的糯麦A-、B-型淀粉,其预测血糖指数显著降低,表观直链淀粉含量显著增加、溶解度随着温度的增加而变大,膨胀力随着温度的增加基本保持不变。采用扫描电子显微镜观察到酶法改性后的淀粉颗粒形态出现孔洞结构,利用X射线衍射和傅里叶红外光谱分析相对结晶度和1 047 cm-1/1 022 cm-1处的比值可得,复合酶改性淀粉的长程有序结构和短程有序结构显著改善。通过普鲁兰酶预处理后再用分支酶改性,对糯麦A-型和B-型淀粉进行结构修饰,能够显著改善其消化特性。  相似文献   

5.
本文以小米淀粉为原料,采用微波、酶解、微波复合酶解三种方法改性淀粉。从淀粉颗粒形貌、偏光特性、结晶结构、短程有序性、粒径分布等方面对小米淀粉进行结构表征,测定其直链淀粉含量、溶胀力与透明度等指标以分析小米淀粉的理化特性。结果表明:改性后,小米淀粉的颗粒结构被破坏,偏光十字特性消失,结晶结构发生改变,但三种改性方法均不影响小米淀粉的基本官能团。其中,微波改性小米淀粉为A型晶体,酶解和微波复合酶解改性淀粉结晶型为B型,微波复合酶解改性淀粉的相对结晶度提高了35.32 %。改性淀粉的粒径、直链淀粉含量均有所提高,与原淀粉相比,微波复合酶解改性淀粉的直链淀粉含量增加了49.03 %。综上所述,与单一法相比,微波复合酶解法对淀粉颗粒结构和理化性质的改善效果最佳,这对于小米淀粉基食品的开发应用具有重要意义。  相似文献   

6.
本文旨在探究单螺杆挤压对豌豆淀粉消化特性的作用机理,阐述物料水分、螺杆转速和挤出温度影响规律,并通过扫描电子显微镜,X-衍射,快速黏度仪从分子晶型、结构、黏度性质等角度,揭示豌豆抗性淀粉的理化性质。结果表明,豌豆淀粉经挤压处理,快消化淀粉含量显著降低,抗性淀粉和慢消化淀粉含量也发生不同程度影响,其中在水分含量26%,螺杆转速110 r/min,挤出温度70℃条件下抗性淀粉的含量达到为78.83%;挤压过程中高温、高压、高剪切力作用破坏了淀粉颗粒的结构,使其转化成更稳定的V型晶体;豌豆抗性淀粉的峰值黏度、谷值粘度、最终黏度、回生值分别为559.41 cP、474.38 cP、754.34 cP、280.33 cP,与豌豆淀粉相比显著降低(p0.05),且黏度曲线较为平滑。挤压可以通过改变豌豆淀粉结构、晶型,从而显著改变豌豆淀粉消化特性和黏度特性,这为豌豆淀粉改性研究提供新思路,为淀粉高值化加工产品拓宽新领域,为开发相关功能性产品了提供了新材料,也为豌豆淀粉的产业化实践工艺参数提供了参考。  相似文献   

7.
低GI淀粉原料的筛选及理化特性和体外消化特性的研究   总被引:1,自引:0,他引:1  
以豌豆、马铃薯、玉米、木薯、大米、小麦、鹰嘴豆中的淀粉为研究对象,对其淀粉颗粒形貌、粒径分布、糊化特性、直链淀粉含量及淀粉组分进行探究,并采用体外消化试验分析7种淀粉的体外消化特性,计算其预测血糖生成指数(expected glycemic index,eGI)。结果表明:豌豆淀粉和鹰嘴豆淀粉粒度分布比较集中,大小较均匀;豌豆淀粉和鹰嘴豆淀粉的回生值较高,易于老化;豌豆淀粉和鹰嘴豆淀粉的直链淀粉含量较高,玉米淀粉中快消化淀粉含量最高,马铃薯淀粉慢消化淀粉含量最高,而鹰嘴豆淀粉的抗性淀粉含量最高。体外消化试验结果表明:鹰嘴豆淀粉体外消化率曲线增速最慢,7种淀粉的eGI值从低到高依次为:鹰嘴豆淀粉(48.9)小麦淀粉(57.7)豌豆淀粉(59.9)玉米淀粉(67.3)木薯淀粉(70.2)马铃薯淀粉(70.3)大米淀粉(76.3)。  相似文献   

8.
采用不同方法制备豌豆抗性淀粉及其性质研究   总被引:3,自引:1,他引:2  
以豌豆淀粉为原料,研究交联、湿热、脱支酶解3种不同方法处理后其抗性淀粉含量及其他性质的变化。实验表明:交联、湿热、脱支酶解处理均能增加豌豆抗性淀粉的含量,且脱支酶解处理>湿热处理>交联处理;交联处理后其溶解度降低,但湿热和酶解均使其溶解度增加,3种处理方式均使豌豆淀粉膨胀度降低;交联和酶解处理使豌豆淀粉的糊化温度和糊化焓增加,糊化变得困难,而湿热处理后其糊化峰变为2个;X射线衍射数据表明,交联处理不会改变豌豆淀粉的晶型,湿热处理和脱支酶解后豌豆淀粉的晶型分别由原来的C型变为A型和B型;体外消化模拟实验表明,经交联处理后豌豆淀粉消化性增加,而经湿热和酶解处理后其消化性能均降低。  相似文献   

9.
为探究超声改性蛋白对玉米淀粉凝胶结构及消化特性的影响规律,将不同超声时间处理的大豆分离蛋白分别添加至玉米淀粉中,利用傅里叶红外光谱仪、差示扫描量热仪、X-射线衍射仪及流变仪等表征超声改性蛋白与玉米淀粉复配凝胶体系结构,并对其体外消化特性进行分析。结果表明:与原玉米淀粉相比,当淀粉中添加不同超声时间处理的大豆分离蛋白后,玉米淀粉的短程有序性、分子内和分子间氢键强度、糊化焓值(ΔH)均降低,且随着超声时间的延长,呈逐渐降低趋势,当超声时间达到30min时,复配体系的ΔH降低了27.27%;超声改性蛋白与玉米淀粉间相互作用主要通过疏水作用力;复合凝胶体系的X-射线衍射图显示出典型Ⅴ型结构特征,说明改性蛋白的加入改善了淀粉消化特性,与原淀粉相比,慢消化淀粉和抗性淀粉含量均随着超声时间的延长逐渐升高,慢消化淀粉和抗性淀粉质量分数分别提升了7.01%和3.41%。研究结果旨在为改性蛋白在淀粉基食品中的应用提供理论依据。  相似文献   

10.
为了探究不同温度的压热处理对3种不同晶型(A型、B型、C型)淀粉颗粒结构和消化特性的影响,将玉米淀粉、马铃薯淀粉和豌豆淀粉在110、120、130 ℃压热条件下进行处理,并采用XRD、SEM、RVA、DSC和酶解等方式表征不同处理前后淀粉样品的理化性质和消化特性。结果表明,压热处理后淀粉的糊化特性显著改变,峰值粘度、回升值、最终粘度、崩解值降低,糊化温度升高。微观结构分析表明,压热处理过程中的水分和热能会使淀粉颗粒部分糊化,进而导致颗粒表面出现凹陷。压热处理后的马铃薯淀粉逐渐失去B型结晶的特征衍射峰,并显现出A型结晶的特征。与原豌豆淀粉相比,压热处理后的豌豆淀粉晶型有从C型转为A型的趋势,而玉米淀粉的衍射峰没有的明显变化。此外,压热处理后不同晶型淀粉中抗性淀粉的质量分数均显著升高(P<0.05)。本研究系统揭示了压热处理后不同晶型淀粉结构及消化特性的变化规律,为后续利用压热法制备具有低消化率的淀粉基食品提供了理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号