首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
张相芬  刘艳  袁非牛 《计算机工程》2022,48(12):304-311
基于深度学习的医学图像分割对医学研究和临床疾病诊断具有重要意义。然而,现有三维脑图像分割网络仅依赖单一模态信息,且最后一层网络的特征表达不准确,导致分割精度降低。引入注意力机制,提出一种基于深度学习的多模态交叉重构的倒金字塔网络MCRAIP-Net。以多模态磁共振图像作为输入,通过三个独立的编码器结构提取各模态的特征信息,并将提取的特征信息在同一分辨率级进行初步融合。利用双通道交叉重构注意力模块实现多模态特征的细化与融合。在此基础上,采用倒金字塔解码器对解码器各阶段不同分辨率的特征进行整合,完成脑组织的分割任务。在MRBrainS13和IBSR18数据集上的实验结果表明,相比3D U-Net、MMAN、SW-3D-Unet等网络,MCRAIP-Net能够充分利用多模态图像的互补信息,获取更准确丰富的细节特征且具有较优的分割精度,白质、灰质、脑脊液的Dice系数分别达到91.67%、88.95%、84.79%。  相似文献   

2.
针对在多模态MR图像分割中对不同模态特征间的关联性及全局和局部特征提取考虑不充分,导致分割精度降低的问题,基于注意力机制,提出多模态脑肿瘤MR图像分割方法.首先提出三重注意力模块,用于增强各模态特征间的关联性以及对感兴趣区域的位置和边界信息精确判断;然后设计空间和通道注意力模块,用于双重捕获空间和通道上的全局及局部特征,增强对肿瘤组织结构信息的学习能力.在公开数据集BraTs18和BraTs19上的实验结果表明,分割全肿瘤时,所提方法的Dice系数、精确率、灵敏度和Hausdorff距离分别达到了90.62%, 87.89%, 90.08%和2.258 3,均优于对比的同类方法.  相似文献   

3.
针对单幅图像超分辨率(single image super-resolution, SISR)重建算法存在低分辨率图像(LR)到高分辨率图像(HR)的映射学习具有不适定性,深层神经网络收敛慢且缺乏对高频信息的学习能力以及在深层神经网络传播过程中图像特征信息存在丢失的问题.本文提出了基于对偶回归和残差注意力机制的图像超分辨率重建网络.首先,通过对偶回归约束映射空间.其次,融合通道和空间注意力机制构造了残差注意力模块(RCSAB),加快模型收敛速度的同时,有效增强了对高频信息的学习.最后,融入密集特征融合模块,增强了特征信息流动性.在Set5、Set14、BSD100、Urban100四种基准数据集上与目前主流的单幅图像超分辨率算法进行对比,实验结果表明该方法无论是在客观质量评价指标还是主观视觉效果均优于对比算法.  相似文献   

4.
针对基于残差网络和密集网络的图像融合方法存在网络中间层的部分有用信息丢失和融合图像细节不清晰的问题,提出了基于双残差超密集网络(Dual Residual Hyper-Densely Networks,DRHDNs)的多模态医学图像融合方法。DRHDNs分为特征提取和特征融合两部分。特征提取部分通过将超密集连接与残差学习相结合,构造出双残差超密集块,用于提取特征,其中超密集连接不仅发生在同一路径的层之间,还发生在不同路径的层之间,这种连接使特征提取更充分,细节信息更丰富,并且对源图像进行了初步的特征融合。特征融合部分则进行最终的融合。通过实验将其与另外6种图像融合方法对4组脑部图像进行了融合比较,并根据4种评价指标进行了客观比较。结果显示,DRHDNs在保留细节、对比度和清晰度等方面都有很好的表现,其融合图像细节信息丰富并且清晰,便于疾病的诊断。  相似文献   

5.
近年来,随着科学技术的高速发展,深度学习的蓬勃兴起,实现图像超分辨率重建成为计算机视觉领域一大热门研究课题.然而网络深度增加容易引起训练困难,并且网络无法获取准确的高频信息,导致图像重建效果差.本文提出基于密集残差注意力网络的图像超分辨率算法来解决这些问题.该算法主要采用密集残差网络,在加快模型收敛速度的同时,减轻了梯度消失问题.注意力机制的加入,使网络高频有效信息较大的权重,减少模型计算成本.实验证明,基于密集残差注意力网络的图像超分辨率算法在模型收敛速度上极大地提升,图像细节恢复效果令人满意.  相似文献   

6.
随着数码相机、手机等电子设备的普及,每天都会产生大量的图像,但通常这些图像的分辨率比较低。针对单幅图像超分辨率(Single Image Super-Resolution,SISR)方法性能较低的问题,提出一种基于残差密集网络的单幅图像超分辨率重建方法。将浅层的卷积特征输入到残差密集块,获得全局和局部的特征;对图像进行超分辨率重建,得到清晰的高分辨率图像。为了验证该方法的有效性,在四个公共的数据集Set5、Set14、B100和Urban10上进行了定性和定量的实验。实验结果表明,该方法能够更好地恢复出高分辨率的图像。  相似文献   

7.
社交网络的发展为情感分析研究提供了大量的多模态数据。结合多模态内容进行情感分类可以利用模态间数据的关联信息,从而避免单一模态对总体情感把握不全面的情况。使用简单的共享表征学习方法无法充分挖掘模态间的互补特征,因此提出多模态双向注意力融合(Multimodal Bidirectional Attention Hybrid, MBAH)模型,在深度模型提取的图像和文本特征基础上,利用双向注意力机制在一个模态下引入另一个模态信息,将该模态的底层特征与另一模态语义特征通过注意力计算学习模态间的关联信息,然后联结两种模态的高层特征形成跨模态共享表征并输入多层感知器得到分类结果。此外MBAH模型应用后期融合技术结合图文单模态自注意力模型搜寻最优决策权值,形成最终决策。实验结果表明,MBAH模型情感分类结果相较于其他方法具有明显的提升。  相似文献   

8.
基于深度学习的图像超分辨率网络模型复杂度高,特征利用率较低,尤其是应用在复杂拍摄环境中的图像超分辨率重建,由于特征损失严重,最终重建的效果也较差。针对以上问题,提出分层特征融合图像超分辨率网络。引入对称式的分层结构,以增强不同层次图像特征的融合;使用更为密集的残差连接结构,减少局部残差损失,同时缓解梯度消失和梯度爆炸问题;在每个残差块中加入注意力机制,增强网络对图像高频信息的敏感度。为了验证算法在复杂环境中的效果,将模型应用于高空航拍图像超分辨率重建中。实验结果表明,所提算法相比于EDSR算法,在14个不同航拍图像环境中,尤其是复杂场景下的重建,平均PSNR提高了0.31?dB,效果显著。  相似文献   

9.
岳根霞 《计算机仿真》2021,38(2):225-229
针对传统多模态病变图像挖掘误差较大的问题,提出了一种基于遗传算法的多模态病变图像关联挖掘方法.通过获取病变图像Shannon信息熵中条件熵与联合熵的关系,对病变图像的互信息进行归一化处理;通过遗传算法对病变图像互信息的最优解进行搜索,获取病变图像的最优模态;建立最优模态获取模型,获取多种成像设备病变图像的最优模态,实现多模态病变图像的合成.为了验证基于遗传算法的多模态病变图像的图像挖掘误差较小,将该多模态病变图像与基于刚体模型的多模态病变图像、基于图像灰度的多模态病变图像、基于图像特征点的多模态病变图像进行对比,得到这四种多模态病变图像的图像挖掘误差分别为0.41、0.2、0.19、0.063,通过比较可知该多模态病变图像的图像挖掘误差最小,即该多模态病变图像更加精准.  相似文献   

10.
针对现有基于深度学习的图像超分辨率重建方法,其对细节纹理恢复过程中容易产生伪纹理,并且没有充分利用原始低分辨率图像丰富的局部特征层信息的问题,提出一种基于注意力生成对抗网络的超分辨率重建方法.该方法中生成器部分是通过注意力递归网络构成,其网络中还引入了密集残差块结构.首先,生成器利用自编码结构提取图像局部特征层信息,并提升分辨率;然后,通过判别器进行图像修正,最终将图像重建为高分辨率图像.实验结果表明,在多种面向峰值信噪比超分辨率评价方法的网络中,所设计的网络表现出了稳定的训练性能,改善了图像的视觉质量,同时具有较强的鲁棒性.  相似文献   

11.
目的 以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊图像的超分辨问题,提出了一种新颖的Transformer融合网络。方法 首先使用去模糊模块和细节纹理特征提取模块分别提取清晰边缘轮廓特征和细节纹理特征。然后,通过多头自注意力机制计算特征图任一局部信息对于全局信息的响应,从而使Transformer融合模块对边缘特征和纹理特征进行全局语义级的特征融合。最后,通过一个高清图像重建模块将融合特征恢复成高分辨率图像。结果 实验在2个公开数据集上与最新的9种方法进行了比较,在GOPRO数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN(gated fusion network),峰值信噪比(peak signal-to-noive ratio,PSNR)分别提高了0.12 d B、0.18 d B、0.07 d B;在Kohler数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN,PSNR值分别...  相似文献   

12.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

13.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。  相似文献   

14.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

15.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

16.
针对经典的基于卷积神经网络的单幅图像超分辨率重建方法网络较浅、提取的特征少、重建图像模糊等问题,提出了一种改进的卷积神经网络的单幅图像超分辨率重建方法,设计了由密集残差网络和反卷积网络组成的新型深度卷积神经网络结构。原始低分辨率图像输入网络,利用密集残差学习网络获取更丰富的有效特征并加快特征梯度流动,其次通过反卷积层将图像特征上采样到目标图像大小,再利用密集残差学习高维特征,最后融合不同卷积核提取的特征得到最终的重建图像。在Set5和Set14数据集上进行了实验,并和Bicubic、K-SVD、SelfEx、SRCNN等经典重建方法进行了对比,重建出的图像在整体清晰度和边缘锐度方面更好,另外峰值信噪比(PSNR)平均分别提高了2.69?dB、1.68?dB、0.74?dB和0.61?dB。实验结果表明,该方法能够获取更丰富的细节信息,得到更好的视觉效果,达到了图像超分辨率的增强任务。  相似文献   

17.
目的 基于学习的图像超分辨率重建方法已成为近年来图像超分辨率重建研究的热点。针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法网络层少、感受野小、泛化能力差等缺陷,提出了基于中间层监督卷积神经网络的图像超分辨率重建方法,以进一步提高图像重建的质量。方法 设计了具有中间层监督的卷积神经网络结构,该网络共有16层卷积层,其中第7层为中间监督层;定义了监督层误差函数和重建误差函数,用于改善深层卷积神经网络梯度消失现象。训练网络时包括图像预处理、特征提取和图像重建3个步骤,采用不同尺度因子(2、3、4)模糊的低分辨率图像交叉训练网络,以适应对不同模糊程度的图像重建;使用卷积操作提取图像特征时将参数pad设置为1,提高了对图像和特征图的边缘信息利用;利用残差学习完成高分辨率图像重建。结果 在Set5和Set14数据集上进行了实验,并和双三次插值、A+、SelfEx和SRCNN等方法的结果进行比较。在主观视觉评价方面,本文方法重建图像的清晰度和边缘锐度更好。客观评价方面,本文方法的峰值信噪比(PSNR)平均分别提高了2.26 dB、0.28 dB、0.28 dB和0.15 dB,使用训练好的网络模型重建图像耗用的时间不及SRCNN方法的一半。结论 实验结果表明,本文方法获得了更好的主观视觉评价和客观量化评价,提升了图像超分辨率重建质量,泛化能力好,而且图像重建过程耗时更短,可用于自然场景图像的超分辨率重建。  相似文献   

18.
目的 将低分辨率(low-resolution,LR)图像映射到高分辨率(high-resolution,HR)图像是典型的不适定恢复问题,即输出的HR图像和输入的LR图像之间的映射是多对一的,这意味着仅通过增加网络深度来确定HR图像与LR图像之间的特定映射关系是非常困难的。针对该问题,本文提出一种基于多监督光滑化损失函数的图像超分辨率方法。方法 该方法主体由LR图像上采样通道和HR图像下采样通道两部分组成。各通道分为两个阶段,每个阶段均包括浅层特征提取模块、基于迭代采样错误反馈机制的采样模块、全局特征融合模块和图像重建模块。将LR图像上采样通道第1阶段结果与HR图像下采样通道第1阶段结果对比,然后将HR原图像和HR图像下采样通道第2阶段结果作为约束构成多监督,使映射函数空间尽可能精确,并将多监督损失函数光滑化保证梯度在全局范围内传递。结果 在基准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)、Urban100(urban scenes dataset)、Manga109(109 manga volumes dataset)数据集...  相似文献   

19.
目的 图像超分辨率重建的目的是将低分辨率图像复原出具有更丰富细节信息的高分辨率图像。近年来,基于Transformer的深度神经网络在图像超分辨率重建领域取得了令人瞩目的性能,然而,这些网络往往参数量巨大、计算成本较高。针对该问题,设计了一种轻量级图像超分辨率重建网络。方法 提出了一种轻量级图像超分辨率的蓝图可分离卷积Transformer网络(blueprint separable convolution Transformer network,BSTN)。基于蓝图可分离卷积(blueprint separable convolution,BSConv)设计了蓝图前馈神经网络和蓝图多头自注意力模块。然后设计了移动通道注意力模块(shift channel attention block,SCAB)对通道重点信息进行加强,包括移动卷积、对比度感知通道注意力和蓝图前馈神经网络。最后设计了蓝图多头自注意力模块(blueprint multi-head self-attention block,BMSAB),通过蓝图多头自注意力与蓝图前馈神经网络以较低的计算量实现了自注意力过程。结果 本文方法在4个数据集上与10种先进的轻量级超分辨率方法进行比较。客观上,本文方法在不同数据集上取得了不同程度的领先,并且参数量和浮点运算量都处于较低水平。当放大倍数分别为2、3和4时,在Set5数据集上相比SOTA(state-of-theart)方法,峰值信噪比(peak signal to noise ratio,PSNR)分别提升了0.11dB、0.16dB和0.17dB。主观上,本文方法重建图像清晰,模糊区域小,具有丰富的细节。结论 本文所提出的蓝图可分离卷积Transformer网络BSTN以较少的参数量和浮点运算量达到了先进水平,能获得高质量的超分辨率重建结果。  相似文献   

20.
本文针对现有光学遥感图像超分辨率重建模型对感受野尺度关注不足和对特征通道信息提取不充分带来的问题, 提出了一种基于多尺度特征提取和坐标注意力的光学遥感图像超分辨率重建模型. 该重建模型基于深度残差网络结构, 在网络的高频分支中设计了多个级联的多尺度特征和坐标注意力模块 (multi-scale feature & coordinate attention block, MFCAB), 对输入的低分辨率光学遥感图像的高频特征进行充分发掘: 首先, 在MFCAB模块中引入Inception子模块, 使用不同尺度的卷积核捕捉不同感受野下的空间特征; 其次, 在Inception子模块后增加坐标注意力子模块, 同时关注通道与坐标两个维度, 以获得更好的通道注意力效果; 最后, 对各MFCAB模块提取的特征进行多路径融合, 实现多重多尺度空间信息与通道注意信息的有效融合. 本文模型在NWPU4500数据集上2倍、3倍放大中PSNR值达到34.73 dB和30.12 dB, 较EDSR分别提升0.66 dB和0.01 dB, 在AID1600数据集上2倍、3倍、4倍放大中PSNR值达到34.71 dB、30.58 dB、28.44 dB, 较EDSR分别提升0.09 dB、0.03 dB、0.04 dB. 实验结果表明, 该模型在光学遥感图像数据集上的重建效果优于主流的图像超分辨率重建模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号