共查询到19条相似文献,搜索用时 46 毫秒
1.
基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究 总被引:3,自引:0,他引:3
在基于深度学习的电机轴承故障诊断中,一般采用基于生成对抗网络(generative adversarial networks,GANs)的数据增强方法以获取足量故障数据,从而保证模型的性能。一维时序信号下的数据增强会出现生成数据质量差、网络训练速度慢以及训练过程繁琐等问题,该文针对此,提出一种基于二维灰度图及辅助分类生成对抗网络(2D gray pixel images and auxiliary classifier generative adversarial networks,2D-ACGANs)的数据增强方法。首先将原始的一维时序信号转换为二维灰度图,以得到适用于二维卷积神经网络的输入数据;在此基础上结合辅助分类生成对抗网络,将原始数据的标签作为此网络的输入进行数据增强,该方法较一维数据增强方法有效减少网络训练参数量,同时解决传统方法中训练繁琐及标签信息丢失的问题。最后将提出的方法用于电机轴承的故障实验数据中进行对比验证,结果表明改进的2D-ACGANs算法能生成更高质量的数据,有效提高故障识别准确率及网络训练速度,具备良好的工程应用可行性。 相似文献
2.
针对一维机械振动信号在输入卷积神经网络时无法充分提取相对位置关系的问题,提出一种基于格拉姆角场(GAF)和小尺寸卷积的胶囊网络的轴承故障诊断分类方法。利用GAF对采集到的振动信号进行编码,可以很容易地进行角度透视,从而识别出不同时间间隔内的时间相关性并产生相应特征图。胶囊网络对小尺寸图像相对位置比较敏感,特征提取具有优势,同时考虑到VGG网络优秀的特征提取能力,在结合胶囊网络和VGG网络的基础上,加入深度小尺寸卷积层。将GAF编码的振动图像输入到改进的CapsNet网络进行训练,组成GAF-CapsNet模型对轴承故障进行诊断。该模型在凯斯西储大学轴承数据集上进行试验,结果表明,格拉姆角和场(GADF)编码方式相比格拉姆角差场(GASF)编码效果差,效果较好的GADF-CapsNet有99.27%准确率,较差的GASF-CapsNet也有98.83%准确率,相较其他编码方式和卷积神经网络,该模型性能表现普遍比其他模型具有更高准确率。 相似文献
3.
为了从多方面反映电机系统状态,实现对电机故障模式的自动识别和准确诊断,将数据融合技术与神经网络相结合,建立电机故障诊断系统。首先在数据融合级上对故障特征量进行分类处理,然后采用多层神经网络进行故障特征级融合和电机故障的局部诊断,获得彼此独立的证据,再运用D-S(Dempser sha-fer)证据理论融合算法对各证据进行融合,最终实现对电机故障的准确诊断。诊断测试试验证明,该诊断系统提高了电机故障诊断的精度,能够满足诊断的实时性要求。 相似文献
4.
针对传动系统主轴承故障诊断准确率低的问题,结合辅助分类器生成对抗网络(ACGAN)与堆叠降噪自编码器(SDAE),提出一种ACGAN-SDAE的故障诊断方法。通过ACGAN生成高质量的新样本,以扩充传动系统主轴承故障样本量的大小,并利用SDAE从含噪样本中提取鲁棒性特征,提高了故障诊断的准确率。仿真结果表明,ACGAN-SDAE故障诊断方法可有效诊断不同故障样本量下的传动系统主轴承故障,具有良好的域自适应性和抗噪性能,平均故障诊断准确率达到90%以上,相较于SDAE、SVM、MLP常用故障诊断方法,具有一定的优越性。 相似文献
5.
6.
7.
8.
9.
电机故障诊断的多传感器数据融合方法 总被引:4,自引:0,他引:4
电机及其运行环境的复杂性决定了电机故障诊断也非常复杂。尽管随着检测技术、信号处理技术、智能技术的进步,故障诊断技术得到了很大的发展,但是目前的故障诊断技术仍因为各种原因存在着很大的不确定性。目前诊断技术依然是基于单个参数,如电流、振动、温度、润滑油成分所能携带的故障特征来进行诊断.但是因为模型或者环境的不确定性导致这些诊断结果模糊不清甚至错误。分析了传统故障诊断方法中存在的不确定性.并介绍多传感器数据融合的方法来处理由于单个参数带来的诊断的不确定性,同时介绍一个数据融合故障诊断系统(fusion diagnosis system.FDS)的结构模型.并分析这个结构在应用中的关键问题。 相似文献
10.
基于Park矢量模信号小波分解的感应电机轴承故障诊断方法 总被引:5,自引:0,他引:5
在分析小波包分频特性的基础上,总结出小波包分解子频带按频率高低排列的通式;对三相定子电流的Park矢量模信号进行小波包分解,求相应子频带的小波包分解系数的均方根值(RMS),并用其表征轴承的故障特征,以此作为轴承故障诊断的依据。研究表明,该方法降低了基频电流及电流中噪声的影响,克服了由于受负载变化引起故障特征频率波动使得难以准确提取故障特征频率的缺陷;实验结果证明了该方法应用于电机轴承故障诊断的可行性。 相似文献
11.
12.
针对应用深度学习进行燃气轮机故障诊断时,因故障信号数据不易获取,使得正常运行样本多、故障样本少,影响故障
诊断准确率的问题,提出了一种采用深度卷积生成对抗学习对燃气轮机故障样本进行扩充的方法。 根据燃气轮机振动信号特
点,利用快速傅里叶变换、经验模态分解、解调预处理故障信号,提取故障频域特征并选取特征值指标,将振动信号转为二维灰
度图像,通过正交梯度惩罚算法训练深度卷积生成对抗故障样本生成模型。 实例结果表明,使用所提方法获得 CWRU 轴承数
据集生成样本测试准确率为 98. 01%;某型燃气轮机生成样本测试准确率为 97. 43%,同条件下均优于其他主流故障样本生成方
法,验证了所提故障样本生成方法的有效性和优越性。 相似文献
13.
针对工业场景下复杂工况导致的轴承故障数据特征分布差异,以及难以获得大量有标签数据的问题,提出一种基于Wasserstein 距离与局部最大平均偏差(LMMD)改进的一维卷积子域适应对抗迁移网络(SANN)。 该网络首先构建 CNN 特征提取器进行预训练,学习领域特征表示,在对抗训练阶段,对抗层引入 Wasserstein 距离来度量源域与目标域的差异,实现边缘分布的对齐,固化训练结果。 在特征提取层引入 LMMD 计算模块捕获每个类别的细粒度信息,实现条件分布的对齐。 通过两种变工况下的轴承故障数据集对该模型性能进行验证。 实验结果表明,无监督的条件下,本文所提方法在目标数据集上相较于基础域对抗网络分别提高了 5. 0% 和 6. 9% 的识别精度,性能优于现有的迁移算法。 相似文献
14.
参数失配、死区效应、采样偏差、传感器故障、编码器故障等会导致永磁同步电机(permanent magnet synchronous motor,PMSM)三相电流包含高次谐波,进而产生转矩脉动与振动噪声。针对这一问题,该文提出一种基于图像融合和深度学习的数据驱动方法诊断电驱系统故障。首先,以永磁同步电机驱动器三相电流信号作为原始数据源,结合仿真和实验建立多源故障数据库。其次,对三相电流信号进行短时傅里叶变换,得到时频域彩色图像,各相提取一种颜色形成灰度图表示单相特征。采用图像融合方法将3张灰度图融合为一张彩色频谱特征图。最后,应用SqueezeNet迁移学习对样本进行训练。实验结果表明,该方法综合故障诊断准确率达到98.63%,说明所提方法能实现系统级的多源故障诊断,并且具有较高的实用性与泛化性,可以有效提高故障诊断的准确率。
相似文献15.
针对现有图像修复算法修复结果存在结构一致性差和纹理细节不足等问题,在生成对抗网络(GAN)的框架下,提出一种基于多特征融合的图像修复算法。首先,采用双编码 解码结构提取纹理和结构特征信息,并引入快速傅里叶卷积残差块,有效捕获全局上下文特征。然后,通过注意力特征融合(AFF)模块完成结构与纹理特征之间的信息交换,提高图像的全局一致性。并利用密集连接特征聚合(DCFA)模块在多个尺度上提取丰富的语义特征,进一步提升修复图像的一致性和准确性,以呈现更精细的内容。实验结果表明,在破损区域占比为40%~50%时,相较于最优对比算法,所提算法在CelebA-HQ数据集上PSNR和SSIM分别提高1.18%和0.70%,FID降低3.99%。在Paris StreetView数据集上PSNR和 SSIM分别提高1.17%和0.50%,FID降低2.29%。实验证明所提算法能有效修复大面积破损图像,修复结果具有更合理的结构和丰富的纹理细节。 相似文献
16.
17.
为了实现红外和可见光图像信息的良好平衡,本文利用生成对抗网络技术,提出了一种深层次多分类的生成对抗网络红外与可见光图像融合方法。该方法将主辅思想引入到生成器的梯度和强度信息提取中,并提高了生成器卷积层的深度及浅层网络信息提取能力。在鉴别器中使用多分类器同时估计可见光和红外区域的分布。经过连续的对峙学习,使融合结果中具有显著的对比度和丰富的纹理细节信息。实验获得的信息熵及香农熵值为6.86、互信息值为13.72、标准差值为34.82、结构相似性值为0.71。对比实验结果表明,在主客观评价中,本文提出的方法获得更好的红外与可见光图像融合性能。 相似文献
18.
针对实际工况下风电机组故障数据难以获取,现有数据增强方法对1维数据特征提取效果不佳的问题,提出一种基于双流生成对抗网络(DSGAN)的小样本智能故障诊断方法。设计了一种新的双流网络,通过深度特征提取流与时间特征提取流对风电机组故障数据进行深度与时间双特征提取。提出一种全局特征引导的自适应加权融合(GFG-AWF)模块对提取的双特征进行融合,并通过引入对抗生成思想,设计DSGAN完成小样本数据的增强。构建基于增强数据集辅助的双流诊断网络实现故障分类识别。利用轴承试验台数据与实际风电机组运行数据对所提方法进行了验证,最终诊断准确率达到98 %,表明所提方法可以有效解决小样本的故障诊断问题。 相似文献
19.
为了有效监测复杂工况下分布式驱动电动汽车用轮毂电机的运行状态,提高其轴承故障的识别准确率,提出一种基于多信息加权融合和二维卷积神经网络(MIWF-2DCNN)的故障诊断方法.首先,将轮毂电机轴承的多方位振动监测信号分别进行二维数据重构和时频变换,逐一转化成灰度图后按照方位顺序堆叠成时域灰度图集和时频域灰度图集,作为故障诊断模型的输入;其次,将高效通道注意力机制(ECANet)的网络结构进行改进,提出了改进高效通道注意力机制(iECANet),其核心思想是在全局平均池化(GAP)基础上添加上全局最大池化(GMP)分支,基于有效信息的贡献度更新各分支的权重系数,进而提取时域和时频域的故障特征,实现了多信息加权融合;再次,利用GMP简化传统二维卷积神经网络(2DCNN)模型的一层全连接层,实现了网络轻量化.最后,基于轮毂电机不同工况下实验数据,进行同一工况下对应验证、不同工况下交叉验证及消融实验验证.结果表明所提的MIWF-2DCNN模型能够有效提取轮毂电机轴承故障特征,在复杂环境和多变工况下故障识别率保持在95%以上,整体优于传统的LeNet-5、1DCNN模型. 相似文献