首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
机械振打器活塞杆处O形圈不同密封结构下的性能分析   总被引:2,自引:1,他引:1  
依据机械振打器实际工况,建立了机械振打器活塞杆处O形圈安装于矩形沟槽和V形沟槽内的有限元分析模型,分析了不同密封结构下O形圈接触应力、剪切应力及位移矢量与密封流体压力之间的关系。结果表明:V形沟槽适用于密封介质压力不大的情况;在流体压力较大时,矩形及V形沟槽形式的O形圈密封结构均满足密封要求,但V形沟槽内O形圈更易损坏,因此机械振打器活塞杆处O形圈密封结构选择矩形沟槽较好。  相似文献   

2.
为检验水下密封结构的可靠性,利用Ansys Workbench集成平台对有无挡圈配合的O形密封圈的变形和受力情况进行比较分析,并对深水环境中有挡圈配合的O形圈的密封性能进行数值模拟分析。结果表明:在介质压力较大时,有挡圈配合的O形圈可有效防止挤入咬伤,在同样保证密封可靠的条件下最大Von Mises应力可减小20%以上;当介质压力为10 MPa左右时,有挡圈配合的O形圈的最大Von Mises应力有明显的拐点,介质压力大于10 MPa后,O形圈的应力变化趋于平缓,可避免O形圈被破坏导致的密封失效;有挡圈配合的O形圈结构中,起密封作用的是O形圈而非挡圈,挡圈的作用主要是改善O形圈的受力,提高整个密封结构的可靠性。模拟的结果可以说明O形圈配合挡圈提高密封可靠性的原理,为水下密封结构的可靠性检验和密封结构的优化提供了有效的方法。  相似文献   

3.
基于有限元分析软件ANSYS建立了加挡圈O形圈二维轴对称几何模型,对高压工况下振动对密封圈静密封性能的影响进行研究。首先,给出了振动工况下O形圈的密封行为变化,预测密封件易失效部位;其次,对比分析了不同压力和振动幅值对密封静力学性能的影响。结果表明:较大的介质压力加剧O形圈被挤入张开的密封间隙,活塞杆振动挤压O形圈材料,从而造成应力集中,因此在介质压力较大时,需要注意防震;而提高挡圈材料的回弹性,能有效防止由于振动造成的O形圈的失效损坏。  相似文献   

4.
水下柔性连接器可解决水下油气管道在连接时因管道角度偏离而无法成功对接的问题。水下连接器的密封结构以球面上的O形圈为主,为了验证连接器密封结构在水下的密封性能,通过对O形圈材料本构方程的计算分析,得到O形圈橡胶材料的重要材料参数;从von Mises应力、接触压力、不同接触面的接触宽度等方面,分析不同介质压力对O形圈密封性能的影响。结果表明:水下柔性连接器密封结构在不同工作状态下均能够保持良好的密封性能,且介质压力越大,O形圈与球形结构上的密封槽之间的接触应力就越大,连接器密封性能有所提升。通过压力试验验证了O形圈球形结构应用在水下是可靠的。  相似文献   

5.
《机械科学与技术》2016,(7):1018-1022
采用ABAQUS软件分析介质压力、预压缩率对D形橡胶密封圈的变形、接触应力、米塞斯应力和剪切应力的影响,并和近似尺寸的O形圈进行对比。通过分析发现:相比于O形圈,D形圈内部米塞斯应力作用范围更小,而其接触面宽度更大;不同介质压力下D形圈能获得更好的密封性能,但压力较低时其寿命将小于O形圈;在较小预压缩率下D形圈更易获得良好的密封效果,且寿命也更长;高预压缩率下D形圈仍能获得更好的密封效果,但更容易出现老化;在圆弧与矩形连接处添加圆角凸台,结构优化后可有效降低D形圈内部的米塞斯应力以及剪切应力,使其具有更长的使用寿命。  相似文献   

6.
本文提出一种加氢枪用滑环式组合密封圈,工作压力达70MPa,由PEEK材料的滑环和氟橡胶的O形圈组成。模拟分析了密封圈的静密封机理及介质压力的影响。测试了密封圈的静密封和动密封性能。结果表明:滑环与活塞杆的接触压力,及滑环与O形圈的接触压力,随介质压力呈线性变化,前者斜率大于后者。最大Von Mises应力分布在滑环圆周槽内,低于PEEK的屈服极限。组合密封圈在70MPa下可实现零气泡的静密封漏率。  相似文献   

7.
陈波  杨晓  涂庆 《润滑与密封》2019,44(3):92-98
采用ABAQUS软件建立帽形滑环式组合密封有限元模型,研究不同工作压力、密封间隙、运动速度和摩擦因数对其密封性能的影响规律。研究结果表明:静密封工况下,活塞杆与O形圈间的最大接触应力是影响密封性能的关键因素,随着工作压力的增大或密封间隙的减小,O形圈与帽形滑环的最大Von Mises应力均逐渐增大,各表面间的接触应力也逐渐上升;动密封工况下,工作压力越大、密封间隙越小,接触应力越大,密封间隙为0.3 mm其动密封性能最优,而随摩擦因数的增大,接触应力总体呈上升趋势,运动速度则对于接触应力基本无影响。  相似文献   

8.
超高液压下O形橡胶密封圈的有限元分析   总被引:1,自引:0,他引:1  
利用ABAQUS软件对O形橡胶密封圈在超高液压下的应力和接触压力进行了有限元分析,探讨了不同压力下O形橡胶密封圈的VonMises应力和接触压力的变化规律,分析了压缩率及密封间隙对最大VonMises应力与最大接触压力的影响。结果表明在超高液压下,O形圈VonMises应力主要集中在液压缸与活塞杆的密封间隙区域,且最大VonMises应力随着密封间隙的增加而显著上升;压缩率对初始应力和接触应力影响较大,适当提高压缩率能够提供密封的可靠性,O形圈最大接触应力随着油压的增加呈近似线性变化。  相似文献   

9.
介绍了O形圈角密封槽的结构特点及压缩量的计算方法。针对某角密封槽设计泄漏故障,利用有限元分析软件Ansys分析O形圈不同受力下的接触应力。通过分析发现泄漏的原因为:三角形密封槽结构O形圈受介质力后,轴向接触应力明显减小。根据分析结果制定改进方案,通过改变三角形密封槽的角度以减小介质力对接触应力的影响,解决泄漏问题,为三角型密封槽的设计改进提供依据。  相似文献   

10.
建立齿形滑环密封系统的数值计算模型,采用有限元方法分析O形圈和滑环的接触压力和应力分布,并探讨初始压缩率、介质压力和滑环齿厚对齿形滑环密封圈密封性能的影响。结果表明:齿形滑环密封系统中O形圈的高应力区出现在靠近凹槽底部位置,而滑环的高应力主要集中在与轴筒和凹槽接触的2个尖角部位;增加初始压缩率可提高密封圈的密封性能,但密封圈的应力也逐渐增大;介质压力越大,密封圈的应力及密封面上的接触压力也随之增大;适当增加滑环齿厚可提高密封圈的密封性能及滑环抵御变形的能力。针对齿形滑环密封圈中滑环与凹槽接触的2个尖角处最易发生失效的问题,采用对其两尖角倒角的改进方案。结果表明:在相同工作条件下,改进后齿形滑环密封圈主密封面的最大接触压力提高,而且滑环和O形圈截面的最大Von Mises应力减小。因此,改进后的齿形滑环密封圈密封性能更好,使用寿命更长。  相似文献   

11.
为了提高水力加压器密封性能,设计一种由滑环与O形密封圈组成的组合密封;利用流体压力渗透载荷的加载方法对密封结构进行有限元仿真,得到单因素滑环结构参数对密封性能的影响规律;利用正交试验,分析多因数滑环结构参数综合作用对活塞密封性能的影响。研究结果表明:滑环沟槽底部厚度、滑环侧边宽度、滑环高度、活塞单边径向密封间隙对动密封面接触压力影响依次减弱,新型密封结构选择滑环高度6.5 mm、滑环侧边宽度2.65 mm、滑环沟槽底部的厚度0.7 mm、单边径向间隙0.25 mm时,其最大接触应力比常规O形密封圈结构提高了245%;新型密封结构中的动密封面接触应力比常规O形密封圈结构有了显著的提高,提高了水力加压器的密封性能。  相似文献   

12.
O形圈密封沟槽棱圆角有利于O形圈和挡环的安装,防止O形圈或挡环被锐边划伤而影响密封可靠性,且沟槽棱圆角半径对O形圈密封性能也有较大影响.以沟槽棱圆角半径为变量,利用有限元分析软件建立有、无挡环配合使用2种O形圈密封结构的二维轴对称模型,分析在35 MPa介质压力下静密封和动密封2种密封状态下O形圈密封性能,比较不同半径...  相似文献   

13.
针对传统圆柱形液压活塞承载力不足问题,提出一种矩形异形活塞,研究其在不同工况下的密封性能。基于Abaqus软件建立异形活塞有限元模型,研究介质压力、密封间隙、活塞运动状态以及摩擦因数对密封性能的影响,并分析异形密封环不同位置处的应力分布和翻转情况。结果显示:静密封时,介质压力越大,密封环的最大Mises应力和最大接触应力越大;密封间隙越小,最大Mises应力与最大接触应力越大;相比静密封,内行程过程中最大Mises应力和最大接触应力都有明显增加,且随摩擦因数增加而增加,而外行程中最大Mises应力和最大接触应力相比静密封差异较小;各工况下应力最大值均出现在密封环圆弧段;在活塞运动过程中密封圈并未发生翻转,只是存在位置的平移情况。研究结果证明了异形活塞的可行性以及良好的密封性能,为活塞结构设计与优化提供了依据。  相似文献   

14.
全回转推进器桨毂动密封采用O形密封,其实际间隙的改变直接导致压缩率变化,从而对密封性能产生影响。从设计角度和工作角度对桨毂密封端面的实际间隙进行分析,研究服役过程中的装配误差、实际工况和摩擦磨损导致的间隙变化规律以及相互耦合。基于该实际间隙,在ABAQUS软件中建立桨毂动密封有限元模型,分析不同压缩率和介质压力下动密封的密封性能,如Mises应力、润滑脂油膜厚度和压力等,揭示了不同间隙下桨毂动密封性能的变化规律。结果表明:随着压缩率增大,最大Von-Mises应力和最大油膜压力增加,最小油膜厚度略微减小,最大Von-Mises应力由O形密封圈与桨叶法兰主接触区和桨毂体侧壁渐渐向主接触区过渡;随着介质压力增大,最大Von-Mises应力和最大油膜压力增加,最小油膜厚度略微减小,最大Von-Mises应力由O形密封圈与桨叶法兰主接触区和桨毂体底部逐渐向法兰低压接触区过渡;最大油膜压力始终大于油压值,动密封不会发生失效;通过适当增加装配间隙和介质压力有利于密封圈在自密封作用下获得更好的密封性能。  相似文献   

15.
为改善蕾形密封的密封性能,考虑介质压力渗透效应,利用有限元分析软件ANSYS研究安装工况及介质压力作用下蕾形密封的密封特性,以及运动速度、摩擦因数、几何参数对动密封性能的影响。研究表明:介质压力作用时,蕾形密封密封面接触压力主要由支撑部承担,密封圈不会被挤入密封间隙,具有较好的抗磨损、抗挤出特性;动密封工况下,外行程比内行程产生的接触压力更大,外行程接触压力随摩擦因数增大而增大,内行程则相反,运动速度对动密封性能影响较小。根据几何参数对密封性能的影响对其进行响应面优化,在满足密封要求的前提下降低了活塞杆表面的最大等效应力,降低了活塞杆因表面疲劳磨损而发生密封失效的风险。  相似文献   

16.
应用ABAQUS软件建立YO组合密封的有限元模型,分别比较Y形组合密封与Y形密封、聚氨酯和丁腈橡胶2种材料的Y形组合密封,在密封区域的静态接触压力和Mises应力分布,分析O形圈截面直径对2种材料Y形组合密封性能的影响规律。结果表明:Y形组合密封在密封区域的接触压力和Mises应力均大于相同规格、材料的Y形圈,且外行程时Y形组合密封接触压力增大更明显,应力分布更均匀,验证了Y形组合密封的双重密封和改善根部抗撕裂的特性;在O形圈截面直径相同的情况下,聚氨酯组合密封外行程与内行程的最大接触压力差值远远高于丁腈橡胶组合密封,而丁腈橡胶组合密封Mises应力分布更均匀;随着O形圈截面直径的增大,聚氨酯组合密封的最大接触压力呈现先增大后减小的趋势,丁腈橡胶组合密封呈现逐渐减小的趋势,但两者的Mises应力均呈现逐渐增大的趋势,且丁腈橡胶组合密封增大更显著。研究结果为不同工作条件下密封件的选择提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号