首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在TritonX-100/C10H21OH/H2O微乳液中合成了LaPO4纳米粒子,其粒径约5 nm。用高速环块摩擦磨损试验机考察了LaPO4纳米粒子在铝合金表面的摩擦学性能,并用X射线光电子能谱对其摩擦化学作用机制进行了研究。研究结果表明,LaPO4纳米粒子能提高微乳液的润滑性能,其在摩擦过程中,发生了摩擦化学反应,在摩擦表面生成了由LaPO4、La2O3、A lPO4等组成的化学反应膜。同时,微乳液中的有机分子吸附在铝合金表面构成了有机吸附膜,也起到了减摩抗磨的作用。  相似文献   

2.
淬硬钢高速切削加工易出现切削温度高和刀具磨损快等问题,因此有效冷却和润滑非常重要。提出油包水滴射流(OoW)与纳米粒子相结合的绿色冷却润滑方法,将Al2O3和MoS2分别添加到水和大豆油中得到纳米流体,再混合雾化喷出纳米粒子油包水滴射流(N-OoW)。制备了0.25%和0.75%两种质量分数的纳米流体,形成N0.25-OoW和N0.75-OoW两种纳米粒子油包水滴射流方式,并与原OoW方式对比。开展摩擦磨损实验,对比分析摩擦系数及磨痕形貌,再开展两种车削速度下的车削实验,对比分析刀具寿命及刀具磨损。结果表明,N0.75-OoW方式的摩擦系数、磨痕宽度、磨痕深度和刀具磨损均最小;在切削速度120m/min和200m/min时,相比于OoW,N0.75-OoW方式的刀具寿命分别提高了29.6%和34.4%;纳米粒子油包水滴射中,单一纳米粒子优异的抗磨减摩性能以及纳米粒子之间的协同效应是降低摩擦磨损及提高刀具寿命的主要原因。  相似文献   

3.
为改善低黏度润滑油的摩擦磨损性能和成膜性能,选用纳米TiO2为添加剂,低黏度的聚α烯烃(PAO8、PAO10)和聚醚(PAG)作为基础油,在四球式摩擦磨损实验机上考察纳米TiO2添加剂对润滑油摩擦磨损性能的影响,利用点接触光弹流润滑试验台,研究不同速度、载荷下和纳米TiO2添加量对润滑油成膜性能的影响。结果表明:加入一定质量分数的纳米TiO2添加剂能够明显提高润滑油的抗磨减摩性能,在PAO8、PAG和PAO10基础油中分别加入质量分数0. 3%、0. 05%和0. 3%的纳米TiO2时,摩擦因数和磨斑直径均最小;综合比较摩擦因数和磨斑直径,纳米TiO2在PAO8基础油中表现出最好的抗磨减摩性能,摩擦因数减小了约54. 5%,磨斑直径降低了约10. 4%;随着卷吸速度的增加,润滑油的最小膜厚也逐渐增加,在相同卷吸速度下,与纯基础油相比,添加一定质量分数纳米TiO2添加剂的最小膜厚明显增加;随着纳米TiO2粒子添加量...  相似文献   

4.
研究气缸套试样表面微造型技术和微纳米颗粒填充技术对缸套-活塞环摩擦副摩擦学性能的影响。在富油和贫油2种工况下,探究表面微造型和微纳米颗粒填充技术对摩擦副的摩擦因数和抗黏着磨损时间的影响。试验结果表明:在富油工况下,表面两端微造型和蛇纹石二硫化钼微纳米颗粒复合填充气缸套试样的摩擦因数最小,比机械珩磨气缸套试样的摩擦因数降低了13.99%;在贫油工况下,表面全部微造型和蛇纹石二硫化钼微纳米颗粒复合填充气缸套试样的抗黏着磨损时间最长,比机械珩磨气缸套试样的抗黏着磨损时间延长了85.79%;在试验过程中,表面微坑中的微纳米颗粒的溢出率会随着时间的延长而逐渐下降,最后趋近于0。  相似文献   

5.
赵修臣  刘颖  王富耻 《润滑与密封》2005,(2):103-104,121
利用化学共沉淀法制备了平均粒径为10nm、油酸表面修饰的Fe3O4粒子,并对其作为润滑油添加剂的摩擦学性能进行了研究。试验结果表明,添加油酸修饰的纳米Fe3O4粒子的润滑油表现出了较好的抗磨减摩性能,但是,纳米粒子的添加量有一最佳值。与基础油相比,添加纳米Fe3O4粒子润滑油的摩擦因数最大降低了26%,磨损量降低了28%。在摩擦磨损过程中,添加纳米Fe3O4粒子润滑油的摩擦力矩的变化表现出了时间效应。添加纳米Fe3O4粒子润滑油摩擦磨损后的磨痕表面比基础油摩擦磨损后的磨痕表面光滑,可以推测,纳米Fe3O4粒子对摩擦表面的抛光作用提高了润滑油的摩擦学性能。  相似文献   

6.
采用激光熔覆技术在CL60车轮钢表面分别制备不同含量WS2(质量分数0~8.0%)和CaF2(质量分数5.0%)固体润滑剂以及不同含量h-BN(质量分数0~2.0%)和CaF2(质量分数0~2.0%)固体润滑剂的铁基合金涂层,对比研究了添加不同固体润滑剂铁基合金涂层的显微组织以及干滑动摩擦磨损行为和磨损机制。结果表明:所有涂层均主要由树枝晶和共晶组织组成,表面硬度均达到约800 HV,约为CL60钢的2倍。随着WS2含量的增加,WS2+CaF2/铁基合金涂层的摩擦因数降低,磨损质量损失先降低后基本稳定,当WS2质量分数为6.0%时,磨损质量损失最低,与未添加固体润滑剂的铁基合金涂层相比降低了26.7%,此时孔隙最少,磨损表面损伤轻微,磨损机制为磨粒磨损。随着h-BN含量的增加以及CaF2含量的降低,h-BN+CaF2/铁基合金涂层的摩擦因数与磨损质量损失均先降后增,且当CaF2  相似文献   

7.
用热压成型法制备了纳米氧化铝填充超高分子量聚乙烯(UHMWPE)复合材料,采用销盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响;采用扫描电子显微镜观察了复合材料磨损表面形貌,并借助X射线能谱仪对试样磨损表面进行了微区分析。结果表明:UHMWPE/nano-A l2O3复合材料中的纳米A l2O3粒子含量不同,其磨损表面的碳元素含量也发生不同程度的变化。填充质量分数为15%的纳米A l2O3能较好地改善UHMWPE/nano-A l2O3复合材料的摩擦磨损性能,其磨损表面出现了明显的贫A l区和富A l区,且富A l区以“岛”的形式分布在贫A l区中。  相似文献   

8.
采用水热法合成了在液体石蜡中具有良好亲和性和稳定性的Fe3O4/油酸(OA)纳米粒子。四球测试实验结果表明:Fe3O4/OA纳米粒子作为液体石蜡添加剂具有良好的摩擦学性能。当Fe3O4/OA的添加量为0.25%时,可使摩擦因数和磨斑直径分别减小68.2%和16.9%。试球磨斑表面的SEM分析表明:Fe3O4/OA纳米粒子在磨损表面微观缺陷区域有良好的表面修饰作用,避免了摩擦副的直接接触,减少了摩擦界面的黏着磨损,进而有效地提高了液体石蜡的摩擦学性能。  相似文献   

9.
采用超音速火焰(HVOF)喷涂技术制备了微纳米结构WC-10Co4Cr涂层和质量分数1%CeO2改性微纳米结构WC-10Co4Cr涂层,研究了CeO2的添加对涂层显微组织、力学性能和耐磨粒磨损性能的影响。结果表明:CeO2的添加对粉末烧结过程中Co3W3C相的形成有抑制作用,同时能够减少喷涂过程中W2C相的生成;CeO2改性涂层的孔隙率为未改性涂层的72%;CeO2的添加会加剧涂层的铬元素聚集程度,不利于CoCr黏结相的生成;CeO2改性涂层的力学性能和耐磨粒磨损性能均低于未改性涂层,显微硬度和断裂韧度分别降低了11%和7%,经过15 600 r磨损后,其磨损质量损失率比未改性涂层高36%。  相似文献   

10.
合理的表面织构可有效改善摩擦副界面间的摩擦状态。为研究纳米流体与表面微织构耦合作用对硬质合金刀具材料摩擦性能的影响,采用“两步法”将纳米Fe3O4颗粒添加到水基切削液基础液,制备出质量分数为0.5%的Fe3O4纳米流体,并利用激光微加工技术在光滑的YG6X硬质合金样件表面制备出不同尺寸参数的沟槽型与凹坑型表面微织构。分析纳米流体与表面微织构耦合作用下硬质合金样件的摩擦磨损性能,整理摩擦系数、样件表面磨损形貌、磨球磨损率等数据发现,纳米流体能够有效改善基础液的润滑性能,在一定尺寸形状的织构样件相互作用下表现出优异的抗磨减摩性能,并且揭示了相应的减摩抗磨机理。  相似文献   

11.
本文利用十二烷基硫酸钠/异戊醇/环已烷/水微乳液体系制备了碳酸钙纳米粒子,用透射电镜(TEM)、X—射线衍射仪(XRD)和动态光散射仪(DLS)测定其物理形态,并将其作为添加剂分散到500SN基础油中,用四球实验机考察了其摩擦学性能和用X—射线光电子能谱仪(XPS)对磨斑表面进行分析。实验结果表明:所制备的碳酸钙纳米粒子的粒径约为13nm、呈球形和六方型晶体结构,具有较好的单分散性;具有较好的摩擦学性能,少量的碳酸钙纳米粒子即可提高润滑油的抗磨减摩性能。其摩擦机理是在磨斑表面形成了含有碳酸钙和由其分解而成的氧化钙的保护膜,从而表现出较好的摩擦学性能。  相似文献   

12.
硅烷偶联剂修饰纳米ZrO2润滑油添加剂的摩擦学性能研究   总被引:2,自引:2,他引:0  
以氧氯化锆为原料制备纳米ZrO2并对其结构进行了表征;用硅烷偶联剂对其表面进行表面改性处理,使其具有良好的亲油性;用摩擦磨损试验机测定了所制备的纳米ZrO2作为20#机械油添加剂的摩擦磨损性能。结果表明所制备的ZrO2为粒径为10nm左右的球形颗粒,具有无定形晶体结构;纳米ZrO2作为添加剂可以显著提高20#机械油的抗磨减摩性能,当纳米ZrO2的添加量为0.1%(质量分数)时相应的磨斑直径最小、摩擦因数最低、磨损量最少。  相似文献   

13.
将KH550偶联剂修饰的纳米蒙脱石(MMT)按不同质量分数加入150N基础油中,制备质量分数1%~5%的5种纳米MMT润滑油体系,采用MMU-10G摩擦磨损试验机考察纳米MMT对45#钢摩擦副减摩抗磨性能的影响,采用SEM和EDX等分析试样形貌与表面元素成分的变化,分析影响摩擦学性能的机制。结果表明:质量分数3%的纳米MMT润滑油和具有最好的抗磨减摩性能,相对于基础油润滑体系,可使金属摩擦副磨损失重量最小降低45.5%;所有试样表面均形成了以MMT特征元素和Fe元素为主体组成的自修复膜层,使试样磨损损失获得补偿,其中质量分数3%的纳米MMT润滑油润滑时摩擦副表面MMT特征元素的含量最高,故试样磨损率最小;纳米MMT润滑体系润滑时的摩擦因数均低于纯基础油,但是不同含量的纳米MMT对改善45#钢摩擦副的减摩性没有明显的区别。  相似文献   

14.
崔健  陈国需  李华峰 《润滑与密封》2007,32(11):146-149
以未处理空心微球材料为原料制备粒度分布均匀集中的空心微球材料,用硅烷偶联剂对其进行表面改性处理,使其具有良好的亲油性。用HQ-1环块试验机在高速低载荷和低速高载荷2种工况下,测定了所制备的空心微球材料作为500SN基础油添加剂的摩擦磨损性能。结果表明:经处理后的空心微球材料可以显著提高500SN基础油的抗磨减摩性能;经处理后的空心微球材料的抗磨减摩性能好于未处理空心微球材料,表明粒径分布对摩擦学性能有显著影响。  相似文献   

15.
改变CFR/PEEK表面润湿性,利用HARKE接触角测量仪测量表面接触角,采用OLYMPUS OLS-3100奥林巴斯激光共聚焦显微镜扫描试件表面,获取真实二维照片和三维形貌图,采用MMD-5A标准摩擦磨损试验机在水、海水和液压油介质中进行摩擦磨损试验。结果表明:疏水(油)表面可以有效减小摩擦系数和磨损量,同一种润湿性试件在不同介质中的摩擦系数比较,疏水(油)表面在水介质中摩擦系数最小稳定在0.03左右,海水介质中为0.04左右,液压油介质中为0.1左右;磨损量比较,疏水(油)表面在水介质中磨损量最少为2 mg,海水介质中为7 mg,液压油介质中为1 mg;不同介质中,润湿性对摩擦系数的影响为水<海水<液压油。  相似文献   

16.
网状表面织构对水润滑轴承摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
为研究网状表面织构对水润滑轴承摩擦性能的影响,利用ANSYS对布置有不同密度和深度的轴承模型进行流固耦合仿真,研究不同网纹条件下水膜的承载能力;使用3D打印技术制备不同深度与密度的网状纹理的试样,使用CBZ-1摩擦磨损试验机进行摩擦试验并实时采集摩擦因数,利用表面轮廓仪对试样磨损表面的形貌进行观测.仿真结果表明:在忽略...  相似文献   

17.
为改善低黏度PAO15润滑油的摩擦学性能,通过水热法制备球形与花状MoS_2颗粒,采用X射线衍射仪(XRD)与扫描电子显微镜(SEM)对所制备的MoS_2颗粒进行表征。制备球形与花状MoS_2改性的PAO15油,利用四球摩擦试验机对比研究2种形貌MoS_2在不同用量条件下对PAO15油摩擦学性能的影响。采用光学显微镜、表面轮廓仪、扫描电子显微镜(SEM)与能谱仪(EDS)对磨痕表面进行表征。结果表明:制备的球形与花状MoS_2晶型均较好地符合MoS_2的晶型,掺杂至PAO15油中均能够提升其摩擦学性能,使其摩擦因数降低;随着MoS_2颗粒添加量的增加,PAO15油摩擦学性能有所提升,在质量分数为1.0%时达到最优;花状MoS_2具有更大的比表面积,其对PAO15油抗磨损性能的提升优于球形MoS_2,形成的转移膜能够更好地起到隔离摩擦表面的作用。  相似文献   

18.
新型环保润滑油配方的研制   总被引:2,自引:0,他引:2  
研制了一种新型环保润滑油.该润滑油由表面活性剂、促进剂、纳米粒子、500SN基础油组成,具有极压性能高、抗磨减摩性能好、保护环境、制作简单等特点.其活性剂与促进剂的配方为:(吐温-60∶司本-20∶司本-80=2∶1∶1)∶聚醚=4∶3;纳米粒子配方为:W(Cu)∶W(CaCO3)=1∶1,W(Cu CaCO3)%=0.6%.  相似文献   

19.
为了研究载荷对新型水润滑高分子轴承材料磨损机制的影响,在CFT-1型摩擦磨损试验机上对该材料进行不同载荷下的无/有水润滑摩擦磨损试验,通过考察试样的摩擦因数、磨痕和磨损表面形貌,分析该材料的磨损机制。结果表明:在无水润滑条件下,该材料的摩擦因数随着载荷的增加呈现先降低后逐渐上升的变化趋势,磨损表面均出现塑性变形和撕裂脱落现象,磨损机制主要为黏着磨损,其中随着载荷的增大表面塑性变形趋于严重,而表面撕裂脱落在中等载荷下较为轻微,在低载荷和高载荷下较为严重;在水润滑条件下,该材料的摩擦因数随着载荷的增加也呈现出先下降低后急剧上升的趋势,磨损表面未发生塑性变形和撕裂脱落,但出现脱落的磨粒和犁沟,磨损机制主要为磨粒磨损,其中在中等载荷下,表面脱落的磨粒少、犁沟细小而浅,在低载荷和高载荷下表面脱落的磨粒多、犁沟深。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号