首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 研究氯吡脲[1-(2-chloropyridin-4-yl)-3-phenylurea, CPUU]的使用对6种猕猴桃营养品质和耐贮性的影响。方法 以“贵长”“碧玉”“翠玉”“红阳”“米良一号”和“金桃”6种猕猴桃为试材,使用5、10和20 mg/L3种不同质量浓度CPUU处理幼果期猕猴桃,测定果实品质和贮藏性能。结果 与对照组相比,采收时不同质量浓度CPUU猕猴桃大部分处理组的横纵径有所增加,其单果重、固酸比及可溶性糖显著增加(P<0.05),空心率和果形指数无显著差异;在不同质量浓度CPUU处理组条件下,“碧玉”“金桃”“贵长”“翠玉”和“红阳”猕猴桃的维生素C含量大部分能显著提高(P<0.05),“米良一号”维生素C含量无显著变化。常温货架期贮藏过程中CPUU处理组提高了果实的失重率、软化率、腐烂率以及缩短了果实的货架期。结论 CPUU提高了猕猴桃果实的营养品质,但不利于果实的贮藏。  相似文献   

2.
为了解氯吡苯脲(1-(2-chloropyridin-4-yl)-3-phenylurea,CPPU)对生长期‘徐香’猕猴桃光学参数和内部品质的影响以及光学参数与内部品质的关系,采用单积分球系统(950~1 650 nm)测定经不同质量浓度(0、10、20 mg/L)CPPU处理的生长期猕猴桃的光学吸收系数(μa)和约化散射系数(μs’),并测定猕猴桃的内部品质(可溶性固形物含量(soluble solids content,SSC)、含水率及硬度);分析光学参数与内部品质之间的关系,并建立预测内部品质的偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明,CPPU处理使得猕猴桃的硬度降低,含水率升高,但对SSC无显著影响(P>0.05),且CPPU处理导致猕猴桃的光学参数值发生变化;μa和μs’与猕猴桃同一种内部品质之间呈现不同的正负相关性,且相关系数随波长而变化,并在某一波段内有较好的相关性;基于μa谱建立的PLS...  相似文献   

3.
以‘华优’猕猴桃为试材,于盛花后15 d分别用10、20 mg/L氯吡苯脲(1-(2-chloropyridin-4-yl)-3-phenylurea,CPPU)浸蘸猕猴桃幼果,清水作为对照,研究不同质量浓度CPPU处理对采后‘华优’果实的品质和耐贮性影响。结果表明:CPPU处理能有效增大果实单果质量,且增幅与CPPU使用质量浓度呈正比,但CPPU处理不同程度降低了果实外观品质(果形指数)和风味营养品质含量(干物质含量、可溶性总糖含量、糖酸比、VC含量),20 mg/L处理时负面影响最为严重。CPPU处理降低了果实耐贮性,贮藏过程中,20 mg/L处理其呼吸速率、乙烯释放速率、膜损伤程度高于其他处理,果实冷敏性提高,冷害率、冷害指数显著高于对照,贮藏90 d后果实质量损失率高,好果率低。10 mg/L处理对果实品质、耐贮性损害显著小于20 mg/L但大于对照。  相似文献   

4.
为探明氯吡苯脲(1-(2-chloropyridin-4-yl)-3-phenylurea,CPPU)处理和贮藏过程中质量损失对不同品种 猕猴桃品质和电学特性的影响,以生长期使用20 mg/L CPPU处理幼果的‘秦美’、‘海沃德’猕猴桃为试材,在 室温下贮藏,比较不同质量损失和CPPU处理对‘秦美’、‘海沃德’果实品质指标和电学参数的影响。结果表 明:猕猴桃CPPU处理和贮藏过程中的质量损失都会导致果实品质显著下降,质量损失对‘秦美’猕猴桃品质下降 影响更大,CPPU处理对‘海沃德’猕猴桃品质下降影响更大。在选定的24 个频率中,CPPU处理和未处理的‘秦 美’、‘海沃德’的特征频率分别为3 980、2 510、251、631 kHz,对应的敏感电参数为并联等效电感(Lp)。可 基于果实VC含量与Lp的回归方程实现CPPU处理猕猴桃的无损检测,从而区分猕猴桃是否使用了CPPU。质量损失 率与电学特性无显著相关性,无法建立数学模型实现猕猴桃新鲜度的无损检测。  相似文献   

5.
为从宏观电学特性方面探究采后O3处理是否可以减轻采前氯吡苯脲(1-(2-chloropyridin-4-yl)-3-phenylurea,CPPU)处理对‘秦美’猕猴桃产生的负面影响,以盛花期后28 d使用20 mg/L CPPU蘸果处理,采后贮藏过程中每隔15 d用70 mg/m3 O3处理2 h的秦美猕猴桃为试材,在(0±1)℃、相对湿度90%~95%条件下贮藏,研究贮藏期间生理指标、品质指标与电学特性之间的关系。结果表明:CPPU+O3处理组过氧化氢酶活力、VC含量、可滴定酸质量分数整体高于CPPU处理组,呼吸速率、多聚半乳糖醛酸酶、纤维素酶活力低于CPPU处理组,采后O3处理可减轻CPPU对猕猴桃产生的负面影响。在选定的24 个频率中,CPPU处理的猕猴桃特征频率为0.1 kHz,对照组和CPPU+O3处理的猕猴桃特征频率均为3 980 kHz。通过宏观电学特性判断,采后O3处理能减轻采前CPPU处理对‘秦美’猕猴桃品质和生理方面产生的负面影响。  相似文献   

6.
研究‘秦美’猕猴桃盛花期后28?d用0、10、20?mg/L氯吡苯脲(N-(2-chloro-4-pyridyl)-N’-phenylurea,CPPU)蘸果处理对采后冷藏期猕猴桃果实细胞超微结构的影响。结果表明:CPPU处理加速了猕猴桃果实细胞壁及内部结构的降解,且CPPU质量浓度越大,受损程度越大;10?mg/L?CPPU处理加速了猕猴桃果实淀粉颗粒及胞间质的降解,促使细胞壁弯曲变形及细胞间隙出现,造成猕猴桃果实硬度迅速下降;而20?mg/L?CPPU处理使猕猴桃果实细胞壁严重变形,线粒体严重空泡化,内部结构消失,淀粉颗粒完全降解,细胞间的黏合力丧失。据此认为,CPPU处理加快了猕猴桃果实在贮藏过程中细胞壁、线粒体及淀粉颗粒的降解速度,损坏了细胞器及膜系统的完整性,从而使猕猴桃果实硬度及耐藏性下降,贮藏寿命缩短,品质下降。因此,猕猴桃生产中不建议使用CPPU处理。  相似文献   

7.
目的研究不同品种、不同浓度和不同地理情况下氯吡脲在猕猴桃中的消解规律,并分析氯吡脲在猕猴桃中消解的影响因子。方法在周至县范围内,根据不同地理情况、不同猕猴桃品种设立了6个田间试验,通过密集采样,考察不同施药浓度氯吡脲在猕猴桃中的残留动态、消解率、半衰期及安全使用间隔期,并分析了施药浓度、生长时期、不同品种和不同生产区域对残留量和消解率的影响。结果氯吡脲符合非线性一级动力学消解模式;不同的处理浓度在猕猴桃成熟后均无残留;平均半衰期为11.9d,最大安全间隔期为75 d;施药浓度、不同生长时期对氯吡脲残留量有显著影响,不同区域对氯吡脲残留量无显著影响;不同生长时期对氯吡脲消解率有显著影响;施药浓度、不同地理类型、不同品种对氯吡脲消解率无显著影响。结论由于猕猴桃生长周期较长,只要严格按规定剂量使用,氯吡脲可安全地用于猕猴桃生产,不会形成残留危害。  相似文献   

8.
以‘秦美’猕猴桃果实为试材,于盛花期后28 d分别采用0(对照,清水)、5、10、20 mg/L 4 个质量浓度的氯吡脲(1-(2-chloropyridin-4-yl)-3-phenylurea,CPPU)溶液进行蘸果处理,蘸果时间3~5 s,研究采前CPPU处理对‘秦美’猕猴桃贮藏期间果实硬度及细胞壁降解酶活力的影响。结果表明:CPPU处理加速了果实硬度、原果胶和纤维素质量分数的下降,提高了可溶性果胶质量分数及多聚半乳糖醛酸酶(polygalacturonase,PG)、果胶甲酯酶(pectin methylesterase,PME)、纤维素酶(cellulase,Cx)和β-半乳糖苷酶(β-D-galaetosidase,β-Gal)细胞壁降解活力。各处理组果实硬度与可溶性果胶质量分数和PG、Cx活力呈极显著负相关(P<0.01),与原果胶、纤维素质量分数呈极显著正相关(P<0.01);20 mg/L CPPU处理组果实的β-Gal活力与硬度呈显著负相关(P<0.05)。CPPU处理提高了果实细胞壁降解酶的活力,促进了细胞壁的降解,加速了贮藏期间果实的软化,降低了果实的耐贮藏性。为维持猕猴桃采后果实硬度,延长贮藏期,生产中不宜使用CPPU处理,或使用的质量浓度不宜超过5 mg/L。  相似文献   

9.
氯吡脲是一种猕猴桃生长过程中常用的植物生长调剂,主要作用是增加猕猴桃果实的尺寸和重量。本研究通过化学合成得到氯吡脲代谢产物标准品,利用高效液相色谱串联质谱(LC-MS/MS)建立了猕猴桃中氯吡脲及其4种代谢产物(4-羟基-氯吡脲、3-羟基-氯吡脲、氯吡脲-4-O-β-D-基葡萄糖苷和氯吡脲-3-O-β-D-基葡萄糖苷)同时检测的定性定量方法。样品前处理利用乙腈作为萃取溶剂提取氯吡脲残留,通过PSA添加量的优化改进了QuEChERS样品前处理方法,5种化合物在LC-MS/MS正离子多反应监测模式下进行质谱分析。结果显示:样品前处理过程中PSA的添加量为400mg/15mL,氯吡脲及其4种代谢产物在一定浓度范围内线性关系良好(r2≥0.995),相对标准偏差(RSD)低于7.1%,重复性好,检出限为1~3μg/L,定量限为5~10μg/L,平均添加回收率87%~108%。该方法快速、准确、灵敏及稳定,能满足果蔬中氯吡脲及其代谢产物残留的同时检测。  相似文献   

10.
为探究氯吡苯脲(1-(2-chloropyridin-4-yl)-3-phenylurea,CPPU)处理对莲子采后细胞壁多糖降解特性的影响,以‘太空莲36号’莲蓬为试材,以清水浸泡为对照,以5 mg/L CPPU对莲蓬进行处理。结果表明:CPPU处理可有效维持莲蓬及莲子较好的表型,保持莲子脆嫩口感;CPPU处理的莲子含有更高的共价结合果胶含量和更完整的纤维素多糖碳链结构;CPPU处理可有效抑制果胶甲酯酶、多聚半乳糖醛酸酶等果胶降解酶和外切葡聚糖酶、β-葡萄糖苷酶、内切葡聚糖酶等纤维素降解酶的活力,从而延缓共价结合果胶降解及水溶性果胶、离子结合果胶积累,并保持莲子纤维素和半纤维素含量;同时,CPPU处理保持了莲子细胞壁结构和纤维素微纤丝的形态,并抑制了细胞的质壁分离。因此,CPPU处理有利于抑制莲子细胞壁多糖的降解,更好地维持细胞完整性,保持莲子的口感,从而延缓其采后衰老。本实验为鲜莲蓬和莲子的采后保鲜提供理论依据和技术支持。  相似文献   

11.
在草莓“甜查理”盛花后一周,喷施清水及4个浓度(2.5、5.0、10、20 mg/L)的氯吡脲,检测由此产生的草莓果实可溶性固形物、总酸、游离氨基酸、单宁等风味营养品质含量,电子舌分析技术检测酸、甜、苦、鲜、咸、涩味、苦味回味、涩味回味等味觉指标,评价氯吡脲的使用及浓度水平对草莓风味营养品质和滋味的影响,并分析电子舌在检测氯吡脲对草莓滋味影响方面运用的优势。结果表明:氯吡脲能够提高草莓果实的可溶性固形物的含量,降低总酸含量,提高固酸比值,降低游离氨基酸种类和游离氨基酸总量;低浓度(2.5、5.0 mg/L)的氯吡脲处理能降低草莓单宁含量,而高浓度(10、20 mg/L)处理会使单宁含量显著升高;电子舌味觉分析结果表明低浓度氯吡脲处理可使草莓甜味增加,酸味降低,但是咸味和鲜味及与其高度相关(相关系数均为0.99)的苦味也相应降低;游离氨基酸总量与鲜味值、单宁含量与涩味回味值、总酸含量与酸味值、固酸比与甜味值均呈正相关性。低浓度氯吡脲使用对草莓的甜味、酸味等滋味和风味组成具有正面影响,而无论氯吡脲浓度使用高低对咸味和鲜味等滋味和风味组成均有负面影响。  相似文献   

12.
以猕猴桃果实为试材,采用0(CK)、0.1、0.2、0.3、0.4、0.5 g/L的Nisin溶液浸泡果实1 min,在3℃~4℃下贮藏,研究Nisin对猕猴桃果实贮藏品质的影响。试验结果表明,经过12 d的贮藏,与对照相比,0.3 g/L Nisin溶液处理效果最好,腐烂率为零,而且显著降低果实失重率,有效抑制果实贮藏后期可溶性固形物、可滴定酸和VC量下降,保持果实较好的硬度,从而延缓了果实的衰老。  相似文献   

13.
以失活酵母菌为吸附剂,对猕猴桃汁中植物生长调节剂(氯吡脲)进行吸附。在单因素试验基础上,利用Box-Behnken响应面法对影响猕猴桃汁中氯吡脲吸附的失活酵母菌添加量、氯吡脲初始质量浓度、吸附时间关键因素进行优化,分析吸附对猕猴桃汁品质的影响。结果表明,失活酵母菌吸附氯吡脲的最佳条件为:失活酵母菌添加量28 mg/mL、氯吡脲初始质量浓度0.2 μg/mL、吸附时间3 h。在此条件下,氯吡脲吸附率为97.02%,与预测结果相符。失活酵母菌吸附氯吡脲对猕猴桃汁品质没有显著影响(P>0.05)。  相似文献   

14.
氯吡脲对小鼠的毒性实验研究   总被引:2,自引:0,他引:2  
研究氯吡脲对小鼠急性毒性和致突变性作用,为其在实际生产中安全合理的用药提供科学的实验依据。结果表明:氯吡脲对雌性小鼠的LD50为568mg/kg,属于低毒;对雄性小鼠的LD50为421mg/kg,属于中等毒性;小鼠骨髓微核实验的结果为阴性,无致突变作用。   相似文献   

15.
以‘希姆劳特’及其大粒早熟芽变‘津早无核’葡萄为试材,研究花后10 d使用赤霉素(GA3)、氯吡脲(CPPU)处理对其果实外观品质和内在品质的影响,筛选出适宜的GA3和CPPU浓度和配比组合。结果表明,花后10 d使用GA3和CPPU处理后的‘希姆劳特’和‘津早无核’葡萄果穗质量、粒质量、果粒纵横径提升显著,可溶性固形物含量下降,可滴定酸和Vc含量增加,果实硬度和表皮穿刺强度提高。综合评价表明,花后10 d用50 mg·L-1 GA3+5 mg·L-1 CPPU处理,对‘希姆劳特’葡萄综合品质提升效果最好;花后10 d用25 mg·L-1GA3+5 mg·L-1 CPPU处理,对‘津早无核’葡萄综合品质提升效果最好。  相似文献   

16.
为探索采后莲蓬保鲜新方法,选用‘太空莲36号’为试材,首先以不同质量浓度(2.5、5.0、10.0、15.0、 20.0 mg/L)氯吡苯脲(1-(2-chloropyridin-4-yl)-3-phenylurea,CPPU)对莲蓬进行处理,以莲蓬及莲子感官品质、莲 皮色差、莲子蛋白含量为依据,筛选出最佳的莲蓬处理质量浓度;然后,以不作处理(CK0)和清水浸泡(CK1) 作对照,在(25±1)℃贮藏条件下,研究了CPPU处理对鲜莲蓬呼吸作用及鲜莲子褐变度、可溶性固形物质量分 数和淀粉含量、丙二醛(malondialdehyde,MDA)和过氧化氢(hydrogen peroxide,H2O2)含量、超氧阴离子自 由基(superoxide anion radical,O2 -?)生成速率及超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶 (catalase,CAT)、过氧化物酶(peroxidase,POD)和多酚氧化酶(polyphenol oxidase,PPO)活力的影响。结 果表明:CPPU处理莲蓬的最佳质量浓度为5.0 mg/L,CPPU处理可有效防止莲蓬及莲子褐变,维持莲蓬和莲子较 好的表型,并抑制莲蓬呼吸作用,减少莲子可溶性固形物积累和淀粉消耗,减小O2 -?生成速率和H2O2、MDA等的 累积,同时与对照组相比,能维持较高的SOD、CAT活力,抑制POD、PPO活力。此外,经CPPU处理后,莲子 中CPPU残留量低于国家标准。综上所述,CPPU处理有利于提高采后莲蓬及莲子贮藏品质,是采后鲜莲蓬贮藏保 鲜的一种新方法。  相似文献   

17.
为了评价施用氯吡脲对甜瓜风味品质的影响,本实验以薄皮甜瓜为研究对象,采用电子鼻和电子舌技术结合主成分分析(PCA)和判别式分析方法,并结合甜瓜的生理指标进行分析对甜瓜风味品质进行评价。结果发现使用氯吡脲后的甜瓜与人工授粉的甜瓜相比,甜瓜的纵径和单果重显著提高(p<0.05),而横径和甜瓜中的可溶性固形物没有显著性差异;通过对电子鼻检测发现高浓度氯吡脲(20 mg/L)的使用使成熟期甜瓜中部分挥发性成分减少,电子舌数据显示氯吡脲的使用增加了成熟期甜瓜中的呈酸物质。通过主成分分析,发现氯吡脲对其它风味也造成一定影响,处理组与对照组的品质组成存在显著差异(p<0.05),且与氯吡脲的施用浓度存在一定的相关性,本实验为评价氯吡脲对甜瓜等农产品品质影响提供了科学依据,也为制定氯吡脲的合理使用规范提供了重要的数据支撑。  相似文献   

18.
以‘金田蓝宝石’葡萄为试材,对其进行不同浓度的赤霉素(GA3)、氯吡脲(CPPU)无核化处理,以期得出该品种无核化处理的适宜方法。结果表明,第一次在盛花期使用GA375mg·L-1,第二次在花后10~14 d使用GA3 25 mg·L-1+CPPU 2 mg·L-1时效果最好,无核率为83.33%;此外,果形指数、穗梗粗度、粒质量、果柄长度、果柄粗度、果实硬度相比对照均有所增加,果实的可溶性固形物、可溶性糖、还原糖、可溶性蛋白含量也有所提升。因此,此处理下果实的无核化效果理想,且提高了果实的商品价值,本试验可为‘金田蓝宝石’葡萄无核化生产提供参考。  相似文献   

19.
通过批量吸附试验,以失活酵母菌为吸附剂,研究其对猕猴桃汁中氯吡脲的吸附动力学及热力学。主要采用准一级动力学方程、准二级动力学方程、粒子内部扩散方程及Elovich方程对吸附反应动力学数据进行拟合;利用Langmiur等温吸附模型、Freundlich等温吸附模型、Temkin等温吸附模型及Dubinin-Radushkevich等温吸附模型对吸附反应热力学特征进行研究。结果表明:吸附动力学行为最符合准二级动力学方程,意味着化学吸附是其速率控制步骤。氯吡脲的浓度在0.5~10μg/m L范围内,其吸附平衡数据与Freundlich等温吸附模型拟合性最好,说明失活酵母菌对氯吡脲的吸附不是理想的单分子层吸附。热力学参数G0,H0,S0,表明在293~310 K范围内,失活酵母菌对氯吡脲的吸附是一个自发进行的、放热、熵减小的过程,低温有利于失活酵母菌对氯吡脲的吸附。  相似文献   

20.
目的 通过对对照组和白熟期外源施用氯吡脲处理组的成熟草莓果实进行转录组学分析,探讨外源喷施氯吡脲影响草莓果实成熟的调控机制。方法 利用高通量测序技术RNA-Seq,结合生物信息学方法,进行差异基因的筛选和其通路的功能富集分析。结果 草莓白熟期喷施氯吡脲,成熟果实中有1176个基因表达上调,2031个基因表达下调。差异基因的富集分析发现,植物-病原体相互作用、植物激素信号传导、淀粉和蔗糖代谢、内质网蛋白加工以及次级代谢物的生物合成等通路为差异基因主要富集的代谢途径。结论 植物激素信号转导、植物-病原体相互作用和次级代谢物的生物合成等通路受氯吡脲影响最为显著,其中植物激素信号转导通路是通过不同激素的共同调控来影响草莓的生长成熟。研究结果为氯吡脲影响草莓果实成熟调控基因的挖掘和深入研究奠定了基础。。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号