共查询到20条相似文献,搜索用时 78 毫秒
1.
3.
为了解决快速扩展随机树(RRT)算法在差动机器人路径规划中存在的最近邻函数不合理、收敛速度慢、路径曲折等问题,提出一种改进RRT算法。该算法沿用RRT算法基本框架,在最近邻函数中添加角度变化,以满足差动机器人自身约束;在节点扩展阶段引入启发步长因子,使扩展步长根据节点位置和扩展方向动态调整,加快搜索效率的同时兼顾规划成功率;对初始规划路径进行修剪和平滑处理,以得到差动机器人的可执行路径。仿真实验结果表明,该算法减少了路径搜索时间,生成的路径更为平滑,易于差动机器人跟踪控制。 相似文献
4.
为了解决在城市和山区复杂环境中的多无人机任务分配及路径规划问题,提出了一种基于人工势场算法和RRT融合算法的多无人机协同路径规划方法。基于人工势场算法基础优化斥力函数,加入机间斥力因子,实现了协同避撞。引入RRT算法进行拓展搜索,解决了无人机陷入局部极值点时单一人工势场算法目标不可达的问题。通过三维路径规划仿真实验和算法对比实验验证该方法的可行性,结果表明,融合路径规划算法可以在约束条件下找到全局最优路径。 相似文献
5.
针对RRT~*算法在复杂环境路径规划中存在的盲目搜索、冗余节点及路径较长等问题,提出一种融合树扩展策略和采样策略的改进RRT~*算法(AF-RRT~*)。通过创造父节点改进RRT~*扩展树的结构,缩小路径长度;引入自适应探索,增加采样导向的选择性,减少路径搜索时间,同时不会陷入局部最优陷阱;通过动态步长,减少冗余节点。仿真结果表明,AF-RRT~*算法在多种环境下,路径获取效率和路径质量均优于RRT~*和F-RRT~*。消融实验验证了AF-RRT~*算法和算法各功能模块的有效性。 相似文献
6.
针对动态环境下机器人RRT路径规划算法缺乏稳定性和偏离最优解的问题,提出一种基于对比优化的RRT路径规划改进算法。算法在新一周期的环境下,通过对上一周期路径树进行剪枝和重新规划得到一条稳定的路径,同时利用基本RRT算法规划出一条新路径,通过对比两条路径得到较优解。仿真和真实机器人实验结果均表明,改进的算法提高了动态复杂环境下RRT路径规划的稳定性,并保证了规划的路径逼近最优解。 相似文献
7.
8.
为了解决快速扩展随机树(R RT)在障碍物密集、通道狭窄的环境中收敛速度缓慢、采样节点密集、路径曲折复杂等问题,围绕RRT的一种常见的变体算法RRT*,设计了一种由人工势场(APF)引导RRT*进行路径规划的方法.首先,使用涡流约束向外发散的斥力场,沿着切向梯度方向形成涡流场,并利用涡流人工势场(VAPF)在RRT*偏... 相似文献
10.
11.
自适应RRT无人机航路规划算法研究与仿真 总被引:2,自引:0,他引:2
在复杂环境的航路规划问题研究中,为了降低无人机的飞行代价,需要在规划耗时和路径质量两方面达到一个较好的均衡.为此,提出动态步长和自适应权重相结合的RRT算法,有效地解决了规划耗时和路径质量的均衡问题,并用三次多项式BSpline对路径进行平滑处理.仿真结果表明,在相同的任务环境中,与交叉PSO相比较,动态步长的自适应RRT算法失败次数减少了4252次,耗时降低了89ms,飞行距离减少了4.247 km,且平滑后的路径更加符合无人机实际飞行的需要. 相似文献
12.
在无人飞行器航路规划问题的研究中,为提高航路规划的效率和精度,针对传统遗传算法收敛速度慢、易陷入局部最优、寻优精度较差的问题,提出了一种分层思想的解决方法.首先用链接图法描述规划环境,通过采用Dijkstra算法寻找初始最优航路,并利用航路编码技术对初始航路进行优化;然后在已有的研究成果上,提出一种集混沌优化、模拟退火、遗传算法为一体的改进遗传算法(CGASA),在解决多目标多约束优化问题时取得了较好的结果;最后综合考虑飞行器的机动性能、威胁因素、飞越目标进入角度等代价的选取,利用改进遗传算法调整导航点的位置得出了满足性能要求的航路. 相似文献
13.
针对无人机(UAV)在复杂战场环境下的生存问题,提出了一种基于云模型的人工蜂群算法的航迹规划。在算法中引入一维正态云模型,利用云模型随机性和稳定性的特点来提高传统人工蜂群算法(ABC)的鲁棒性并避免陷入局部最优,同时引入一个新的概率选择策略来保证种群的多样性。采用改进算法来处理UAV的航迹规划问题时,首先将航迹规划问题通过建模转换成一个多维函数优化问题,然后结合云模型和ABC算法的优势,最后用UAV航迹规划任务对新算法进行测试。仿真实验验证了改进算法在解决UAV航迹规划上的可行性和优越性。 相似文献
14.
由于A*算法所规划的路径存在着转折次数多,路径不平滑,路径贴合障碍物和初始时刻转折角度过大等不符合车辆运动学的问题。为了解决上述问题,获得适用于智能车的优化路径,本文通过对车辆运动学建模得到车辆的约束,同时在估价函数中加入车身轮廓代价和障碍物距离代价,并将车辆约束加入到A*算法的启发函数和路径优化中,再使用贝塞尔曲线拟合转折点,使A*算法所生成的路径更加符合车辆的运动学。通过分析改进A*算法可知,改进后的算法所规划的路径更加平滑、合理且符合车辆的运动特性。 相似文献
15.
16.
在三维地形环境下,基本烟花算法进行路径规划时易陷入局部最优解且存在收敛速度慢的问题,为此,提出选择交叉烟花算法。利用栅格法构建三维地形环境并设置威胁区域,使无人车选择合适的节点进行路径探索,结合燃耗代价、平滑代价和威胁代价构建适应度函数,以约束路径节点的生成位置,确保规划出的路径平滑且远离威胁区域。通过基本烟花算法的爆炸、变异、映射和选择操作进行路径搜索,同时加入针对路径节点的轮盘选择操作,使偏离原始路径较远的节点具有更高的爆炸概率,以约束路径的搜索方向,从而加快算法的搜索速度。在此基础上,引入选择交叉火花,通过对轮盘选择后节点间的路径片段进行交叉,以增强种群中烟花之间信息的交互性,提高搜索全局最优解的性能。仿真结果表明,相比基本烟花算法,该算法在简单和复杂地形环境下的适应度值平均提高6%,且运行时间平均缩短13.5%。在各类地形环境下,无人车通过该算法能有效规避威胁区域,并在较短时间内寻找到更加平滑且燃耗更低的路径。 相似文献
17.
针对无人机飞行过程存在未知威胁使智能算法处理复杂度高,导致航迹实时规划困难,以及深度强化学习中调整DDPG算法参数,存在时间成本过高的问题,提出一种改进DDPG航迹规划算法.围绕无人机航迹规划问题,构建飞行场景模型,根据飞行动力学理论,搭建动作空间,依据非稀疏化思想,设计奖励函数,结合人工蜂群算法,改进DDPG算法模型... 相似文献
18.
19.