首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For over half a century, alternating electric fields have been used to induce particle transport, furnishing the ζ-potential of analytes with sizes ranging from a few nanometers to several micrometers. Concurrent advances in nanotechnology have provided new materials for catalysis, self-assembly, and biomedical applications, all of which benefit from a thorough understanding of particle surface charge. Therefore, the measurement of the ζ-potential via electrophoretic light scattering (ELS) has become essential for nanoparticle (NP) research. However, the interpretation of NP electrophoretic mobility, especially that of ligand-coated NPs, can be a complex undertaking. Despite the inherent intricacy of these data, key concepts from colloidal science can help to distill valuable information from ELS. In this Account, we adopt PEGylated Au NPs as an illustrative example to explore extensions of the classical theories of Smoluchowski, Hückel, and Henry to more contemporary theories for ligand-coated NP systems such as those from Ohshima, and Hill, Saville, and Russel. First, we review the basic experimental considerations necessary to understand NP electrophoretic mobility, identifying when O'Brien and White's numerical solution of the standard electrokinetic model should be adopted over Henry's closed-form analytical approximation. Next, we explore recent developments in the theory of ligand-coated particle electrophoresis, and how one can furnish accurate and meaningful relationships between measured NP mobility, ζ-potential, and surface charge. By identifying key ligand-coated NP parameters (e.g., coating thickness, permeability, molecular mass, and hydrodynamic segment size), we present a systematic method for quantitatively interpreting NP electrophoretic mobility. In addition to reviewing theoretical foundations, we describe our recent results that examine how the unique surface curvature of NPs alters and controls their properties. These data provide guidelines that can expedite the rational design of NPs for advanced uses, such as heterogeneous catalysis and in vivo drug delivery. As a practical demonstration of these concepts, we apply the ligand-coated theory to a recently developed noncovalent PEGylated Au NP drug-delivery system. Our analysis suggests that anion adsorption on the Au NP core may enhance the stability of these NP-drug conjugates in solution. In addition to providing useful nanochemistry insights, the information in this Account will be useful to biomedical and materials engineers, who use ELS and ζ-potentials for understanding NP dynamics.  相似文献   

2.
In this work, TiN monolayer and TiN/TiAlN nanolayer coatings were deposited on 100C6 (AISI 52100) steel substrate by Physical vapor deposited (PVD) magnetron sputtering system. The morphological characterization was evaluated using an atomic force microscopy. The mechanical properties were determined by nanoindentation test. The adhesion was investigated by both microindentation and scratch test. The results show that the TiN/TiAlN nanolayer coating have the more rough surface and the better mechanical properties and adhesion compared to TiN monolayer coating. The effect of microstructural and mechanical proprieties on the adhesion behavior was further discussed. It was found that the improvement in adhesion of nanolayer system is in part due to the increase in plastic deformation resistance and the enhancement of mechanical properties (hardness and elastic modulus) and to the structure with a small grain size and a high number of interfaces.  相似文献   

3.
Magnetite (Fe3O4) nanoparticles (NP) with sizes between 20 and 30 nm have been obtained by Fe electrooxidation in the presence of an amine surfactant, which acted as a supporting electrolyte and coating agent, controlling particle size and aggregation during the synthesis. The effect of different parameters on the nature and size of the particles as well as the mechanism of formation of the particles have been studied by different techniques. It was concluded that, under the electrochemical conditions used in this work, the NP mean size was found to be constant at around 20 nm when the electrooxidation current density is increased from 10 to 200 mA cm−2. However, when the potential is over 6 V, particle size decreases from 30 to 20 nm and metallic iron appears as an impurity. The mechanism of particles formation has being clarified and the critical effect of the distance between electrodes for obtaining magnetic iron oxide nanoparticles has been understood. Finally, the presence of an electrostatic adsorbed surfactant coating the particles allows the functionalization of the particles easily by exchange reaction with biomolecules of interest, which makes this material very promising for future application in biotechnology.  相似文献   

4.
This study explores the pharmacokinetics of 22-S-hydroxycholesterol (22SHC) in vivo in rats. We also carried out a metabolic study to explore whether the beneficial effects observed of 22SHC on glucose and lipid metabolism in vitro could be seen in vivo in rats. In the pharmacokinetic study, rats were given 50 mg/kg of [3H]22-S-hydroxycholesterol before absorption, distribution and excretion were monitored. In the metabolic study, the effect of 22SHC (30 mg/kg/day for 3 weeks) in rats on body weight gain [chow and high-fat diet (HFD)], serum lipids triacylglycerol (TAG) content and gene expression in liver and skeletal muscle were examined. Results showed that 22SHC was well absorbed after oral administration and distributed to most organs and mainly excreted in feces. Rats receiving 22SHC gained less body weight than their controls regardless whether the animals received chow diet or HFD. Moreover, we observed that animals receiving HFD had elevated levels of serum TAG while this was not observed for animals on HFD supplemented with 22SHC. The amount of TAG in liver was reduced after 22SHC treatment in animals receiving either chow diet or HFD. Gene expression analysis revealed that two genes (carnitine palmitoyltransferase 2 and uncoupling protein 3) involved in fatty acid oxidation and energy dissipation were increased in liver. Ucp3 expression (both protein and mRNA level) was increased in skeletal muscle, but insulin-stimulated glucose uptake and TAG content were unchanged. In conclusion, 22SHC seems to be an interesting model substance in the search of treatments for disorders involving aberrations in lipid metabolism.  相似文献   

5.
In this study, a core-shell lipid/polymer nanoparticle (NP) was prepared to deliver Isotretinoin drug with pH sensitive and controllable drug release property for oral administration usage. Chitosan was cross-linked to tripolyphosphate to form the core of the NP using the ionic gelation technique and coated with glycerol monostearate lipid as a shell by applying a two-step approach. Response surface methodology was used to investigate the effects of various parameters on particle size and drug entrapment efficiency of the nanoparticles. Optimal nanoparticles with lower particle size and higher entrapment efficiency had a diameter of 100 nm based on TEM analysis and 64% drug entrapment efficiency. Coating NPs surface with lipid changed the NPs charge, hydrophilicity and swelling property. Lipid coating NPs changed release rate from 6 to 4% after 2 h in simulated gastric fluid (SGF), 9 to 16% after 6 h in simulated intestine fluid (SIF) and 21 to 71% after 7 days in blood medium. Kinetic modeling of drug release confirmed Fickian diffusion based on Higuchi model in SIF and blood media where swelling and dissolution of polymer network were negligible, while drug dissolution due to polymer swelling in SGF media was the dominant mechanism for drug release.  相似文献   

6.
This work focuses on the high velocity oxygen–fuel (HVOF) thermal spray processing of coatings and presents a fundamental model for the process which explicitly accounts for the effect of powder size distribution. The model describes the evolution of the gas thermal and velocity fields, as well as the motion and temperature of agglomerate particles of different sizes. In addition to providing useful insight into the in-flight behavior of particles with different sizes, the model is used to make a control-relevant parametric analysis of the HVOF thermal spray process. This analysis allows us to systematically characterize the influence of controllable process variables such as combustion chamber pressure, oxygen/fuel ratio, as well as the effect of powder size distribution, on the values of particle velocity and temperature at the point of impact on substrate. Specifically, the study shows that particle velocity is primarily influenced by the combustion chamber pressure, and particle temperature is strongly dependent on the fuel/oxygen ratio. Furthermore, it shows that the particle velocity and temperature at the point of impact depend strongly on particle size. These findings are consistent with available experimental observations and set the basis for the formulation of the control problem for the HVOF process.  相似文献   

7.
The starch‐based macroporous superabsorbent polymer (St‐MP SAP) was synthesized by graft copolymerization of acrylic acid (AA)/2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) onto cassava starch through free radical polymerization method by using sodium bicarbonate (SHC) as porogen. The monomer conversion kinetics was investigated to determine the suitable time of adding SHC so as to produce large numbers of stable and uniform pores inside the SAP. Introduction of SHC led to the formation of increasing pores and loose structure in St‐MP SAP, the decrease of shear storage modulus (G′). With increasing SHC content, the size of the macro pores increased and the wall thickness decreased, and a large number of micropores can be observed on the pore walls. Meanwhile the equilibrium swelling ratio of St‐MP SAP first increased and then decreased, and reached maximum as high as 1878 g/g and 119 g/g in distilled water and NaCl aqueous solution respectively for the sample with presence of 0.8 wt % SHC. Furthermore, the swelling rate constant (k) increased monotonously and fast swelling was presented. The macro and micropore structure in St‐MP SAP enabled water to flow by capillary effect with much fewer obstructions, and the specific surface area increased, with the result that more hydrophilic groups can get in touch with water molecules rapidly. By introduction of SHC, the water molecules which can form hydrogen bonds with St‐MP SAP molecules decreased, resulting in the decrease of the binding capacity of water molecules and water retention property. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44855.  相似文献   

8.
连续法制备单分散聚苯乙烯微球及粒径影响因素的研究   总被引:1,自引:0,他引:1  
以苯乙烯为单体,偶氮二异丁腈(AIBN)为引发剂,聚乙烯吡咯烷酮(PVP)为分散剂,采用连续分段添加引发剂的方法制备微米级的聚苯乙烯微球。研究了引发剂的添加方式,各组分用量变化对聚苯乙烯微球粒径和粒径分布的影响。结果表明:在反应过程中不断地补加引发剂可以保持活性自由基的生成速率,对聚苯乙烯微球的粒径和粒径分布有着重要的影响。在此基础上,通过改变各组分的用量可以制备出表面光洁,粒径在1.3μm左右的聚苯乙烯微球,且单分散性良好,单分散系数在1.02左右。  相似文献   

9.
Spherical polyelectrolyte brushes (SPB) loaded with silver nanoparticles (Ag‐NP) were synthesized, and they were characterized in aqueous solution using TEM, ICP‐AES and UV‐vis spectroscopy. While the size distribution of the Ag‐NP synthesized at a given temperature is quite uniform this distribution varies with change in synthesis temperature. The Ag‐NP have a strong catalytic effect on the reduction of 4‐nitrophenol to 4‐aminophenol by NaBH4. The addition of α‐cyclodextrin (α‐CD) further accelerates this 4‐nitrophenol reduction and modifies the associated activation parameters. This is attributed to α‐CD complexing 4‐nitrophenol in the vicinity of the Ag‐NP surface and thereby aiding the catalysis. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1977–1982, 2014  相似文献   

10.
Modeling of supercritical gas antisolvent (GAS) process was carried out for ampicillin nanoparticles synthesis. The particle size distribution of ampicillin limits bioavailability. Therefore, the kinetic data are essential for the control of particle size. Volume expansion and phase equilibrium modeling was studied to determine optimal operating conditions for experimental ampicillin production. Experimental ampicillin precipitations with GAS process at various antisolvent addition flow rates were investigated. The process model was then studied for the determination of nucleation and growth rate parameters. Equation of state, material and population balance equations were used for this modeling. A combination of the Crank-Nicholson and Lax-Wendroff methods was utilized to solve the population balance equation. Comparison of the experimental and modeling data showed that the model successfully predicted the particle size distribution. The effect of antisolvent addition rate on nucleation indicated that nucleation was enhanced via higher antisolvent addition rate and consequently smaller particle size was obtained. The mean particle sizes of ampicillin were obtained to be 357.09, 337.04 and 356.68 nm at antisolvent flow rates of 1.6, 2 and 2.4 mL/min, respectively.  相似文献   

11.
响应面法优化纳米UF香精微胶囊工艺   总被引:1,自引:0,他引:1  
陈岩  易封萍 《精细化工》2013,30(1):51-55,63
采用原位聚合法以脲醛树脂(urea-formaldehyde resins,UF)为壁材制备的微胶囊常在微米级水平上,实验选用吐温80作乳化剂,通过探究实验工艺,制备出了纳米粒径的脲醛树脂香精微胶囊。进行了乳化香精粒径、固含量、壁芯比(UF壁材与香精芯材的质量比,下同)单因素实验,以激光粒度仪测定的微胶囊粒径大小和分布情况为考察指标,确定了3种因素的水平范围。实验表明,当体系固体质量分数小于1%,壁芯比为(2~5):1,乳化香精粒径为50~200 nm时可制得粒径分布均匀的纳米粒径微胶囊。用响应面分析软件进行实验设计,得到了微胶囊粒径与3种因素之间的三次回归模型,其R2值为0.992 7。对模型进行4组实验验证,验证实验结果相对偏差在6%以内,该模型具有较高可信度。  相似文献   

12.
活性炭负载Fe(III)吸附剂去除饮用水中的As(V)   总被引:4,自引:0,他引:4  
利用活性炭负载水合铁氧化物制备了复合吸附剂,并用于饮用水中As(V)的去除. 研究了活性炭种类、粒度、溶液pH值、Fe(III)盐浓度和干扰离子等对As(V)去除的影响. 结果表明,煤质活性炭作为基质负载水合铁氧化物比椰壳炭和果壳炭具有更好的除砷效果. 随着炭粒度降低,除砷效率显著增加. 在pH 3~9范围内,活性炭负载水合铁氧化物可有效吸附As(V). F-, Cl-, SO42-的加入对As(V)的去除效率基本无影响,而SiO32-和PO43-则明显抑制As(V)的去除. Langmuir模型比Freundlich模型能更好地描述复合吸附剂对As(V)的吸附平衡. 动力学研究表明,As(V)吸附反应可用二级速率方程描述.  相似文献   

13.
A predictive mathematical model based on particle convection and dispersion is presented for a liquid fluidized bed of coal particles. The numerical representation can follow transient behavior of liquid fluidized beds that contain a defined particle-size distribution. The calculations exhibited excellent agreement when compared to experimental transient pressure-drop data from a column containing particles of Illinois No. 6 bituminous coal in the size range of 20–120 μm. In addition, the model was used to simulate the effect of periodic (hourly) liquid velocity step changes on elutriation of small particles from a given particle-size distribution of 34.5–75.5 μm. For the situation tested, the calculations indicate that (a) the column does not reach a steady state between velocity changes and (b) that higher initial particle elutriation rates decay to lower values until no more particles elutriate from the column.  相似文献   

14.
Modeling and experimental analysis for syndiospecific polymerization of styrene over silica-supported metallocene catalyst was carried out. A detail model was developed by coupling the single particle growth model (PGM) with particle population balance equation. The model was employed to predict the effects of intraparticle mass transfer limitations and the initial catalyst particle size on the rate of polymerization and the particle size distribution (PSD) of syndiotactic polystyrene (sPS). The single PGM, based on a modified polymeric multigrain model, was first utilized to calculate the single particle growth rate and polymerization rate under intraparticle mass transfer limitations and different initial catalyst particle sizes. Then, the model was solved simultaneously with particle population balance equation to estimate the PSD of sPS under the same limitations. The single PGM results showed a significant radial distribution of styrene concentration across polymer growth. It was further noticed that the diffusion resistance was most intense at the beginning of the polymerization reaction and the effects of polymerization rate were stronger. Moreover, it appeared that increasing the initial catalyst particle size led to lower rate of polymerization. The PSD simulation results revealed that the mass transfer limitation, as well as the initial catalyst particle size made a strong impact on the PSD of sPS. In addition, the simulation results obtained from this model showed good agreement results with experimental data of sPS.  相似文献   

15.
以硫酸锌和草酸为原料,采用超声波沉淀法,研究了不同粒径的纳米氧化锌的制备,讨论了不同工艺条件对粒径的影响规律。实验结果表明,采用超声波沉淀法可以制备出平均粒径为21~47nm的纳米氧化锌;反应条件对纳米氧化锌的粒径有显著影响:纳米氧化锌的粒径随草酸与硫酸锌配比的增大而增大,而随反应温度的升高而减小;并且沉淀剂的加入方式对所制备的纳米氧化锌的粒度也有较大影响:一次性将草酸沉淀剂倾倒入锌盐溶液比缓慢滴加所得微粒的粒径较小。  相似文献   

16.
采用CFD-PBM耦合方法对Kenics型静态混合器内分散相油滴破碎及聚并行为进行数值模拟研究,分析了雷诺数、混合元件数、元件长径比等参数对分散相液滴粒径的影响,揭示了分散相在Kenics静态混合器内流动过程中液滴粒径的演化规律.结果表明,随雷诺数增大,分散相液滴出口粒径不断减小,并出现临界趋势;静态混合器的前几个元件...  相似文献   

17.
An in situ particle flux monitor (High Yield Technology, Inc., model PM-100) was evaluated using monodisperse polystyrene latex and oleic acid aerosols. A conventional laser particle counter with a lower size limit of 0.3 μm was used to obtain efficiency data. The counting efficiency of the monitor was determined experimentally as a function of particle size in the diameter range of 0.5–6.0 μm. Other operating characteristics that were studied include the effect on counting efficiency of particle velocity, spatial uniformity of the viewing plane, aerosol concentration, and discriminator setting. In addition, the application of the monitor in a vacuum environment was demonstrated. Results showed that the monitor counting efficiency decreased with particle size (from 4.7% at 6 μm to 0.1% at 0.5 μm). Also, the counting efficiency was found to be dependent on sampling velocity but was unaffected by particle concentration. Further tests showed that the monitor had limited sizing ability. Mie scattering analysis of the sensor geometry suggested that the sensor performance could be improved by modifying the sensor sampling geometry and laser beam configuration. Although the counting efficiency of the monitor is lower than that of a conventional laser particle counter, the small size of the sensor makes it a useful process-monitoring tool (see Borden et al., 1987).  相似文献   

18.
19.

Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1 m 2+ w m diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01 m 1+ w m diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m 3 chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 h after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 w m and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained by integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.  相似文献   

20.
This article describes the formation of silver nanoparticles (NPs) within preformed unsaturated polyester/styrene resins in which the resulting color could be tuned by changing the silver load, time, and method used to grow the NPs. NP size and aggregation are responsible for the resulting sample color, and the samples present very good optical transparency. The silver ions were first added to the prepolymer that was crosslinked by free radical polymerization in the absence of light. NP formation was subsequently induced by submitting the transparent and colorless samples to heat or UV irradiation. Within the heated samples, isolated spherical particles ranging from 3 to 40 nm were observed. UV irradiation led to the formation of particle aggregates; however, as the exposure time was increased, silver NPs became well dispersed within the matrix within a particle diameter range of 9 to 24 nm. The particle formation is faster when induced by UV irradiation. Samples were also prepared by first dissolving rhodamine 6G in the resin. The emission bandwidth of samples prepared in this way showed a dependence on the silver particles amount and size. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号