首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
陈晓梅  肖徐东 《现代电力》2024,45(1):106-115

为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)−双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)−时序模式注意力机制(temporal pattern attention, TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。

  相似文献   

2.
为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network, CNN)-长短期记忆网络(long short term memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Attention,TA),构建CA-CNN和TA-LSTM模块,然后结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型。同时,为提高训练数据的质量并加快模型训练速度,运用K-means和决策树模型选取相似日数据, 构建基于相似日数据的向量特征时序图,最后将时序图输入TCA-CNN-LSTM负荷预测模型完成预测。以澳大利亚某地真实数据集和2016电工杯数学建模竞赛电力负荷数据为算例,分别应用TCA-CNN-LSTM模型与支持向量机、多层感知机(Multilayer perceptron, MLP)、LSTM、CNN-LSTM和CNN-Attention-LSTM模型的预测结果进行对比,实验结果表明所提方法具有更高的预测精度。  相似文献   

3.
基于CNN-LSTM混合神经网络模型的短期负荷预测方法   总被引:5,自引:0,他引:5  
为了更好地挖掘海量数据中蕴含的有效信息,提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型短期负荷预测方法,将海量的历史负荷数据、气象数据、日期信息以及峰谷电价数据按时间滑动窗口构造连续特征图作为输入,先采用CNN提取特征向量,将特征向量以时序序列方式构造并作为LSTM网络输入数据,再采用LSTM网络进行短期负荷预测。使用所提方法对江苏省某地区电力负荷数据进行预测实验,实验结果表明,文中所提出的预测方法比传统负荷预测方法、随机森林模型负荷预测模型方法和标准LSTM网络负荷预测方法具有更高的预测精度。  相似文献   

4.
为了提供与电力负荷相匹配的稳定高效的能源,减少电能因难以储存而造成的浪费,提出一种基于注意力机制、一维卷积神经网络和长短期记忆网络并行结合的负荷预测模型。首先,对山西省某市的负荷特征数据预处理;然后将数据并行输入到模型中进行训练,对模型优化进而获得更准确的短期预测能力;最后将所提模型与其他预测模型在不同的时间步长下进行预测对比。结果表明,所提方法在预测中具有更高的准确率和一定的普适性。  相似文献   

5.
基于深度学习的序列模型难以处理混有非时序因素的负荷数据,这导致预测精度不足。提出一种基于卷积神经网络(CNN)、自注意力编码解码网络(SAEDN)和残差优化(Res)的短期电力负荷预测方法。特征提取模块由二维卷积神经网络组成,用于挖掘数据间的局部相关性,获取高维特征。初始负荷预测模块由自注意力编码解码网络和前馈神经网络构成,利用自注意力机制对高维特征进行自注意力编码,获取数据间的全局相关性,从而模型能根据数据间的耦合关系保留混有非时序因素数据中的重要信息,通过解码模块进行自注意力解码,并利用前馈神经网络回归初始负荷。引入残差机制构建负荷优化模块,生成负荷残差,优化初始负荷。算例结果表明,所提方法在预测精度和预测稳定性方面具有优势。  相似文献   

6.
单一模型在进行超短期负荷预测时会因负荷波动而导致预测精度变差,针对此问题,提出一种基于深度学习算法的组合预测模型。首先,采用变分模态分解对原始负荷序列进行分解,得到一系列的子序列。其次,分别采用双向长短期记忆网络和优化后的深度极限学习机对每个子序列进行预测。然后,利用改进Q学习算法对双向长短期记忆网络的预测结果和深度极限学习机的预测结果进行加权组合,得到每个子序列的预测结果。最后,将各个子序列的预测结果进行求和,得到最终的负荷预测结果。以某地真实负荷数据进行预测实验,结果表明所提预测模型较其他模型在超短期负荷预测中表现更佳,预测精度达到98%以上。  相似文献   

7.
8.
9.
在短期负荷预测中,节假日负荷的相关数据通常较少且负荷规律和平常日差异较大,因此节假日负荷预测的精度往往较差.为此,提出了一种基于参数迁移的节假日短期负荷预测方法,采用深度神经网络结合迁移学习以提高节假日负荷预测精度,用某省电网的实际负荷数据进行了仿真分析.结果 表明,方法能有效提高节假日负荷预测的准确性.  相似文献   

10.
11.
超短期电力负荷预测对电力系统的快速响应和实时调度至关重要,准确预测负荷能保障电力系统的安全并提高用电效率。为获得准确可靠的负荷预测结果,针对电网负荷数据非线性和时序性等特征,提出了一种基于CNN-BiLSTM-Attention(AC-BiLSTM)的新型超短期电力负荷预测方法。该方法首先将卷积神经网络(CNN)和双向长短期记忆(BiLSTM)网络相结合充分提取负荷数据本身的时空特征。然后引入注意力(Attention)机制自动为BiLSTM隐藏层状态分配相应的权重,以区分不同时间负荷序列的重要性,能够有效减少历史信息的丢失并突出关键历史时间点的信息。最后通过全连接层输出最终负荷预测结果。以某地区真实负荷数据为例进行了实验分析。通过两种实验场景对比,验证了该方法具有较高的预测精度,可以为电力系统规划和稳定运行提供可靠的依据。  相似文献   

12.
为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法。首先,以风电场数值天气预报(numerical weather prediction, NWP)为原始输入,基于双层长短期记忆网络(longshort-term memory, LSTM)模型对风电功率进行初步预测。其次,利用极端梯度提升(eXtreme gradient boosting, XGBoost)算法构建误差估计模型,以便在给定未来一段时间内NWP数据的情况下对初步预测误差进行快速估计。然后,利用自适应白噪声完备集成经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将初步预测误差分解为不同频段的误差序列,并将其作为附加性反馈输入,对风电功率进行二次预测。进一步在二次预测模型中引入注意力机制,为风电功率预测序列与误差序列动态分配权重,由此引导预测模型在学习过程中充分挖掘学习与误差相关的关键特征。最后,仿真结果表明所提方法可显著提高短期风电功率预测的可靠性。  相似文献   

13.
目前深度学习技术发展快速,针对其在短期负荷预测任务中处理离散数据效果较差以及泛化性不佳的问题,提出一种基于注意力机制的长短期记忆网络(long short-term memory network with attention mechanism,Attention-LSTM)与Stacking多模型集成的负荷预测方法,可以兼顾二者优势。首先,利用均值编码的方式处理离散特征,接着应用Attention-LSTM对负荷数据进行特征提取,再将处理后的数据一同输入到基于Stacking的多模型集成预测模型中,通过3种基学习器对输入特征进行分析处理,最终通过元学习器完成预测。算例使用2个数据集中的实际负荷数据进行分析,对2个数据集中的负荷数据分别进行预测,并与门控学习单元、轻量级梯度提升机、支持向量机方法进行对比。仿真结果表明,所提方法在2个数据集的预测精度均能够超过98%,比其他3种方法的预测精度更高。  相似文献   

14.
为避免220kV母线供电区域内负荷转供、停电以及小电源等因素对母线负荷预测的不利影响,提出了一种间接预测母线负荷的方法。首先把母线下网负荷转换成该母线供电区域内的理想用电负荷,再将该理想用电负荷作为历史负荷数据采用系统负荷预测的算法进行预测得到初步预测结果,同时获取待预测日各种影响因素的值,初步预测结果剔除各种影响因素...  相似文献   

15.
为解决电力系统的运行方式或拓扑结构变化后暂稳评估模型的适应性问题,常规的特征迁移学习方法主要侧重于拉近源域与目标域数据集间的条件分布或边缘分布的距离,却不能定量的评价这两种分布对于不同域之间的贡献,导致模型迁移性能不理想。针对该问题,引入SENet注意力机制和动态分布自适应算法,构建了基于SE- DDAN迁移的深度自适应网络暂稳评估模型更新框架,从特征提取和不同域间分布权重的动态调整两个层面进行改进,进一步提升了评估模型的迁移性能和自适应性。在IEEE 39和IEEE 140节点系统上进行测试,仿真结果表明所提模型在更新后的评估准确性、适应性和迁移性能方面有一定的优势。  相似文献   

16.
在电力系统负荷预测中,使用传统的单任务学习方法未考虑多个地点的负荷间的潜在关系,忽视关联信息在多个地点间传递的可能会导致学习效果欠佳。针对这一问题,本文提出基于低秩表示的多任务学习方法进行多个地点的多任务负荷预测,该方法在学习过程中可以提取不同位置的负荷预测模型的共享低维表示,从而可以挖掘多个任务之间的关联关系,同时又可以区别不同任务之间的差别。实验表明,多任务负荷预测的平均性能优于决策树和随机森林等单任务学习方法,在负荷预测的精度上有了一定的提升。  相似文献   

17.
为适应智能电网快速响应的要求,电力负荷预测成为智能电网关键任务之一。精准的电力负荷预测响应对电力系统运行的安全性、稳定性、经济性起着至关重要的作用。首先,介绍电力负荷预测的特性及分类;随后,分析电力负荷预测的影响因素,并介绍电力负荷预测的基本步骤和性能评价指标;再将电力系统负荷预测的研究分传统预测方法、机器学习预测方法及深度学习预测方法等3类展开阐述;最后,总结所做的工作并展望电力负荷预测的未来发展方向。  相似文献   

18.
为提高用户侧短期负荷预测的精度,提出了一种基于自适应啁啾模态分解(adaptive chirp mode decomposition,ACMD)和麻雀搜索算法(sparrowsearchalgorithm, SSA)优化双向长短时记忆网络(bi-directionallongshort-term memory, BiLSTM)的短期负荷组合预测方法。针对短期电力负荷存在波动性强和非平稳性的问题,采用ACMD将短期负荷时间序列分解为多个相对简单的子分量,使用BiLSTM分别对各子分量进行预测。同时,为克服BiLSTM参数取值不同导致预测结果不稳定的问题,使用SSA优化BiLSTM模型的超参数。最后将各子分量预测结果叠加得到最终预测结果。通过具体算例,分别与单一预测模型和多种组合预测模型进行比较,实验结果表明该方法具有更高的预测精度。  相似文献   

19.
秦烁  赵健  徐剑  魏敏捷 《电网技术》2024,41(4):1510-1518

针对气象因素对多元负荷变化的灵敏度差异及多元负荷间耦合强度的差异导致多任务学习(multi-task learning,MTL)预测模型精度受限的问题,该文提出一种MTL和单任务学习(single-task learning,STL)组合的多元负荷预测方法。首先使用基于长短期记忆(long and short-term memory,LSTM)网络的MTL模型提取多元负荷间的耦合信息进行初步预测;然后采用基于前置双重注意力长短期记忆(dual attention before LSTM,DABLSTM)网络的STL模型减少输入噪声进行二次预测;同时将初步的预测值输入STL模型,使得STL模型可以考虑未来的时序信息;最后,通过全连接层对两个模型的预测结果进行融合得到最终的预测结果。实验结果表明,所提组合模型相比单一的MTL和STL模型具有更高的预测精度。

  相似文献   

20.
范茜茜  王国强  罗贺  台建玮 《电网技术》2024,49(4):1612-1621

短期电力负荷预测的准确性对智能电网平稳高效运行具有重要意义,但多种因素影响下的负荷数据具有较强的非平稳性与随机波动性,使得高精度的短期电力负荷预测面临挑战。为充分挖掘负荷序列中的趋势特征与周期性特征,准确提取与电力负荷存在潜在相关性的辅助信息特征,提升短期电力负荷预测精度,该文提出了一种基于神经基扩展分析(neural basis expansion analysis,N-BEATS)与辅助编码器的短期电力负荷预测模型。该模型包含两个并行的编码器,基于神经基扩展分析(neural basis expansion analysis,N-BEATS)模型的负荷特征编码器和基于多头注意力机制的辅助信息编码器,分别用于学习负荷数据中的时序特征与辅助信息特征。同时,构建特征融合模块将时序特征和辅助信息特征构造成联合特征向量,并设计基于门控循环单元(gated recurrent unit,GRU)的预测解码器模块进行短期电力负荷预测。在GEFCom2014公开数据集上进行实验,结果表明所提方法与长短期记忆(long short-term memory,LSTM)网络模型、卷积神经网络(convolutional neural network,CNN)-LSTM网络模型、序列到序列(sequence-to-sequence,Seq2Seq)网络模型、季节自回归差分移动平均(seasonal autoregressive integrated moving average,SARIMA)模型及支持向量回归模型(support vector returns,SVR)等基线模型相比,在预测精度方面具有明显优势,平均绝对百分比误差(mean absolute percentage error,MAPE)平均提升了24.16%。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号