共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
1 前言镶钢导轨以其生产成本低、周期短、硬度高、耐磨性能好等优点,一直用于机床行业。为此,我们曾用T8、T10材料进行试验,发现由于镶钢导轨(如图1所示,用A、B、C、D表示导轨的四个淬火表面)上油孔、螺丝孔,定位孔、凹槽较多,加之T8、T10钢 相似文献
6.
7.
8.
基于有限元计算分析了直径为ø40 mm的42CrMo钢圆棒试样分别使用淬火油和PAG水基液淬火后试样不同位置的组织、硬度以及淬火过程中的温度变化,采用硬度检测和显微组织分析对模拟结果进行了验证。结果表明,当使用淬火油淬火时,试样表面由奥氏体向马氏体和贝氏体转变,心部由奥氏体向贝氏体转变;当使用PAG水基液淬火时,试样表层几乎转变成马氏体,心部转变成马氏体和贝氏体;试样经淬火油和PAG水基液淬火后,表面硬度分别为58和55 HRC,均由表面至心部硬度逐渐降低,但使用PAG水基液淬火后试样的心部硬度比用淬火油的高5 HRC,约为50 HRC。 相似文献
9.
10.
11.
42CrMo钢曲轴电磁感应加热过程奥氏体化 总被引:2,自引:0,他引:2
根据高精度差分膨胀仪测量的42Cr Mo钢不同加热速度下奥氏体化膨胀量,获得了奥氏体化过程相关的动力学信息,并利用基于JMAK方程的扩展解析动力学方法拟合了考虑加热速度影响的42Cr Mo钢奥氏体化过程动力学模型。拟合结果与实验结果吻合很好;等速加热时,奥氏体化时间与加热速度满足双对数线性关系。利用扩展动力学解析模型和叠加原理,预测了某曲轴42Cr Mo钢加热速度连续变化的电磁感应加热过程中的奥氏体化过程,为后续淬火过程预测提供了组织准备,为加热速度连续变化的加热过程奥氏体化提供了一种预测方法。 相似文献
12.
研究了不同调质工艺对35CrMo钢板组织及性能的影响。结果表明,淬火加热温度为790 ℃时,钢板没有完全奥氏体化,造成组织不均匀;当淬火温度大于850 ℃时,钢板组织与850 ℃时变化不大。随回火温度升高,试验钢的硬度降低。最终确定850 ℃´60 min水冷淬火+620 ℃´100 min回火作为35CrMo钢板的现场生产工艺。利用该热处理工艺现场生产的钢板性能稳定,为企业创造了良好的经济效益。 相似文献
13.
采用OM、SEM、X射线应力分析、力学性能测试等手段,分析了感应淬火处理对42CrMo钢曲轴连杆轴颈截面组织和残余应力的影响,探讨了不同淬火功率对淬硬层形貌、显微组织和力学性能的影响。结果表明,42CrMo钢曲轴连杆轴颈截面由淬硬层、过渡层和基体3部分组成,淬硬层组织为均匀细小的马氏体,过渡层组织为马氏体和回火索氏体的混合组织,基体组织为回火索氏体。经感应淬火处理,42CrMo钢曲轴连杆轴颈表面残余应力由拉应力变为压应力,随着感应淬火功率的增加,淬硬层深度增加,组织不断细化,当感应淬火功率为2500 W,组织最为均匀细小,表面硬度达到了751.3 HV0.1,耐磨性大幅提升;但是淬火功率过高会导致组织粗化,当感应淬火功率为2600 W时,组织有所粗化,硬度也有所降低。 相似文献
14.
利用GCK10150感应淬火机床(KGPS250/8000电源)和自主研发设计的感应器对某型号大轮拖拉机(≥160马力)42CrMo钢驱动轮轴进行表面淬火工艺试验,借助磁粉探伤仪、洛氏硬度计、金相显微镜和静扭试验机对感应淬火后的42CrMo钢驱动轮轴的组织与性能进行了分析。结果表明,42CrMo钢驱动轮轴感应淬火后的淬硬层深满足花键根部3.25~8.25 mm、光轴表面7~12 mm、键槽≥2 mm,硬度满足淬火硬度52~57 HRC、调质硬度262~302 HBW,并且淬硬层连续,同时零件表面不存在烧伤、裂纹等缺陷。42CrMo钢经基体调质+感应淬火+200 ℃×2 h回火后的抗扭性能最高。 相似文献
15.
以42CrMo钢棒为对象,使用中频感应加热进行调质处理,研究了不同回火温度(500、550、600、650及700 ℃)对42CrMo钢棒组织及力学性能的影响。结果表明,随着回火温度的升高,42CrMo钢的显微组织均为回火索氏体,碳化物由不均匀分布细针状逐渐转变为短棒状,长宽比减小。随着回火温度升高至600 ℃,碳化物转变为弥散分布的颗粒状,650 ℃时颗粒状碳化物出现偏聚,700 ℃时回火索氏体快速粗化,硬度、抗拉强度与屈服强度呈现连续下降趋势,断后伸长率与断面收缩率呈连续小幅度上升趋势。 相似文献
16.
17.
18.
对42CrMo中碳轴承钢进行不同温度中频感应加热及淬火介质的表面淬火处理,并使用洛氏硬度计、光学显微镜、扫描电镜及透射电镜对淬火试样不同区域组织及硬度进行测试分析。结果表明,经表面淬火处理后,按硬度由大到小试样可分为淬硬区、过渡区及基体3个区域,随着表面淬火加热温度的升高,表面淬硬层的深度增加,并且相对于水淬,油淬的淬硬层深度显著减少。组织分析表明,水淬淬硬区组织均为马氏体,而油淬工艺由于冷速较慢,淬硬层组织为马氏体+铁素体组织,不同表面淬火工艺条件下过渡区组织均为马氏体+回火索氏体,基体为原始调质态的回火索氏体。淬硬区、过渡区及基体的组织差异导致不同区域的硬度差异。实际应用中应根据所需淬硬层深度选择合适的水淬加热温度。 相似文献