首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HREM, image calculations and small probe diffraction/AEM have been used to characterize structure and contrast of supported small metal particles of ≤5 nm diameter. Such small particles are thought to be active species in industrial applications such as in heterogeneous catalysis where, in general, the particles employed as catalysts are supported. Image calculations (HREM and diffraction contrast) carried out at both 200 keV and 400 keV at various defoci and support thicknesses have shown that in HREM, particle images are obscured by the support contrast with the loss of edge definition and particles appear to be smaller than they actually are. The particle visibility is better at 400 keV. The calculations have also indicated that particle shape varies as a function of support thickness and defocus. The results have clear implications for identification and interpretation of surface structure of the supported small particles accurately by HREM if not performed under controlled conditions and for determining their size and shape.  相似文献   

2.
S.D. Findlay  N. Shibata  Y. Ikuhara   《Ultramicroscopy》2009,109(12):1435-1446
Annular dark field scanning transmission electron microscopy imaging was recently applied to a catalyst consisting of gold nanoparticles on TiO2 (1 1 0), showing directly that the gold atoms in small nanoparticles preferentially attach to specific sites on the TiO2 (1 1 0) surface. Here, through simulation, a parameter exploration of the imaging conditions which maximise the visibility of such nanoparticles is presented. Aberration correction, finite source size and profile imaging are all considered while trying to extracting the maximum amount of information from a given sample. Comment is made on the role of the thermal vibration of the atoms in the nanoparticle, the magnitude of which is generally not known a priori but which affects the visibility of the nanoparticles in this imaging mode.  相似文献   

3.
N-Paraffin was used as a test specimen for evaluating the relative merits of 400-kV versus 100-kV electron microscopy in recording data for electron crystallographic analysis of beam-sensitive materials. The parameter used for comparison, the relative contrast R, is the ratio of amplitudes from the computed Fourier transform of images and amplitudes from an electron diffraction pattern from the same crystal. R will thus be a measure of the contrast from an experimental image relative to that of a perfect image. Electron diffraction patterns and bright-field images were recorded at 400 kV at a specimen temperature of ?167°C. Using the flood-beam imaging technique the best R-value is 0 08 for all reflections in the resolution zone from 4 to 3 Å. This value is equivalent to that found at 100 kV. In the resolution zone from 3 to 2 Å we have found R — 0 02. Using the spot-scan imaging technique, on the other hand, R was measured to be 0·42 for the reflections between 4- and 3-Å resolution. This amount of relative contrast is 1·7 times that observed at 100 kV. Reflections at 3–2 Å displayed an R-value of 0 05. Besides obtaining higher R-values when applying the spot-scan imaging technique at 400 kV, we observe a higher yield of images with isotropic diffraction and/or higher resolution reflections. Various contrast-attenuating factors, including the modulation transfer function of the photographic film and the cryo-holder, envelope functions for spatial and temporal coherence and lens and high-tension instabilities, the contrast transfer function and lastly the radiation damage effects, have been considered in interpreting the observed image contrast. Overall, use of 400 kV in combination with spot-scan does offer important improvements in contrast levels, which can be very useful in determining the three-dimensional structure from protein crystals.  相似文献   

4.
The specimen preparation method is crucial for how much information can be gained from transmission electron microscopy (TEM) studies of supported nanoparticle catalysts. The aim of this work is to develop a method that allows for observation of size and location of nanoparticles deposited on a porous oxide support material. A bimetallic Pt‐Pd/Al2O3 catalyst in powder form was embedded in acrylic resin and lift‐out specimens were extracted using combined focused ion beam/scanning electron microscopy (FIB/SEM). These specimens allow for a cross‐section view across individual oxide support particles, including the unaltered near surface region of these particles. A site‐dependent size distribution of Pt‐Pd nanoparticles was revealed along the radial direction of the support particles by scanning transmission electron microscopy (STEM) imaging. The developed specimen preparation method enables obtaining information about the spatial distribution of nanoparticles in complex support structures which commonly is a challenge in heterogeneous catalysis.  相似文献   

5.
This review covers several broad areas: firstly, recent developments in HREM instrumentation, and then novel techniques for imaging are discussed, including some of the problems of image interpretation. Applications of HREM techniques to a wide range of materials problems are described and include solid state chemistry, ceramics, semiconductors, metals and natural diamonds. The next generation of high resolution microscopes will operate in the 300–400 kV range, have low Cs objective lenses, and have sufficiently good vacuum to allow the combined use of CBED and EELS facilities with imaging in the sub-2 Å range. Microprocessor control of instrumental parameters such as astigmatism, alignment and defocus are seen as an important way forward in achieving the optimum performance of these instruments.  相似文献   

6.
We show that the number of atoms in a small supported catalyst cluster can be estimated from the strength of electron scattering into a high angle annular detector in the STEM. The technique is related to the Z contrast methods developed by Crewe, Wall, Langmore and Isaacson. It works best for high atomic number catalyst particles when supported on low atomic number supports, such as Pt on γ-aluminium oxide. The method is particularly useful for detecting and measuring particles in the sub-nanometre size range where bright field images are unreliable. Unlike the Z contrast methods, a high angle annular detector is used, which avoids intensity modulations arising from Bragg reflections. The signal is mostly high angle diffuse scattering, which is predominantly Rutherford scattering, and is proportional to the number of atoms probed by the beam, weighted by their individual scattering cross-sections. Scattering strengths of individual clusters are computed from digitized high angle annular detector images. Data for Pt on γ-aluminium oxide, when plotted as imaged area1/2 against intensity1/3, define a straight line. Such plots provide calibration of the intensity increment per atom without the need of external calibration, although assumptions about particle morphology must be made. Reliable results require high signal-to-noise and optimum sampling of the specimen. For an STEM probe size of 0.35 nm, Pt clusters containing as few as three atoms can be detected when supported on typical, 20 nm thick, γ-aluminium oxide supports.  相似文献   

7.
Topographic and/or barrier-height images of ultrafine Pt and Au metal particles supported on a vacuum-deposited carbon film or titanium oxide thin films grown on titanium metal sheets were obtained. The topographic images of colloidal Au particles (5-nm diameter) adsorbed on a titanium oxide thin film showed a structure elongated in the direction normal to the x scan, indicating their weak interaction with the support surface. The topographic images of Pt vacuum-deposited on a carbon film showed c. 4-nm diameter particles, larger than those observed in electron microscopy. The problems inherent to the STM observation of such dispersed metal systems are identified. In the case of Pt particles vacuum-deposited on titanium oxide film, its barrier-height image gave better indication of different phases on the surface than its topographic image. The significance of obtaining barrier-height images along with topographic images for such sample systems is demonstrated.  相似文献   

8.
A new technique is described which can be used for preparing transmission electron microscopy (TEM) specimens suitable for high resolution studies on supported metal catalysts. By conventional silicon processing techniques 200 × 200 μm2 Si3N4 membranes on Si wafers are produced. These membranes are extremely flat and have a uniform thickness of 13 nm. They can be used as a support in various kinds of thin film deposition. A TiO2 film, optimally structured with respect to the requirements for high resolution TEM work in TiO2–metal cluster systems, is deposited on the Si3N4 layer. It consists of one monolayer of 10–25 nm TiO2 crystallites. TiO2 lattice images show that a line resolution down to 0.19 nm is possible. Examples of TiO2–Pd and TiO2–Rh are given using respectively photodeposition and impregnation reduction to produce l.5–4 nm metal clusters.  相似文献   

9.
Using an innovative nanofluid preparation method, ultrasonic-aidedsubmerged arc nanoparticle synthesis system, this paper employs the robustness design method to examine the optimal parameters, such as peak current, pulse duration, open voltage and amplitude of ultrasonic vibration, for obtaining the optimal process for TiO2 nanofluid preparation. Experimental results show that the proposed manufacturing system can successfully prepare uniformly distributed TiO2 nanoparticle using the optimal parameters. The pH of the as prepared TiO2 nanofluid is 7.5, which is much higher than that of isoelectric point, about 4.4. Hence, the suspended TiO2 nanoparticles already possess electrostatic stability properties. Regarding ultraviolet/visible absorbency, the produced TiO2 nanofluid would absorb UV energy when the wavelength is 280 nm to 400 nm. According to the UV-Vis absorption spectrum analysis, the energy band gap of the prepared TiO2 nanoparticle is 3.4 eV.  相似文献   

10.
The real‐space resolving of the encapsulated overlayer in the well‐known model and industry catalysts, ascribed to the advent of dedicated transmission electron microscopy, enables us to probe novel nano/micro architecture chemistry for better application, revisiting our understanding of this key issue in heterogeneous catalysis. In this review, we summarize the latest progress of real‐space observation of SMSI in several well‐known systems mainly covered from the metal catalysts (mostly Pt) supported by the TiO2, CeO2 and Fe3O4. As a comparison with the model catalyst Pt/Fe3O4, the industrial catalyst Cu/ZnO is also listed, followed with the suggested ongoing directions in the field.  相似文献   

11.
A source of high-power nanosecond ultrawideband electromagnetic pulses is described. The 3-ns-long bipolar voltage pulse with a 90-kV amplitude is applied to the input of four-element antenna array. The effective radiation potential values E p R = 560 kV were obtained at a 100-Hz pulse repetition rate.  相似文献   

12.
The electron optical performance of a transmission electron microscope (TEM) is characterized for direct spatial imaging and spectroscopy using electrons with energies as low as 20 keV. The highly stable instrument is equipped with an electrostatic monochromator and a CS-corrector. At 20 kV it shows high image contrast even for single-layer graphene with a lattice transfer of 213 pm (tilted illumination). For 4 nm thick Si, the 200 reflections (271.5 pm) were directly transferred (axial illumination). We show at 20 kV that radiation-sensitive fullerenes (C60) within a carbon nanotube container withstand an about two orders of magnitude higher electron dose than at 80 kV. In spectroscopy mode, the monochromated low-energy electron beam enables the acquisition of EELS spectra up to very high energy losses with exceptionally low background noise. Using Si and Ge, we show that 20 kV TEM allows the determination of dielectric properties and narrow band gaps, which were not accessible by TEM so far. These very first results demonstrate that low kV TEM is an exciting new tool for determination of structural and electronic properties of different types of nano-materials.  相似文献   

13.
High-resolution electron microscopy has been used to characterize the platinum particles supported on TiO2 or ZnO. After reduction at elevated temperatures, the metallic particles display a regular, faceted shape, and several superstructures, Pt3 Ti(C), Pt3 Ti(H), PtTi, and PtZn, have been found. These results, which may involve strong metal-support interaction, have been confirmed by optical diffraction and image simulation.  相似文献   

14.
We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5 x 10(-4) and 3.5 x 10(-2) C/cm2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles.  相似文献   

15.
J. Pawley  R. Albrecht 《Scanning》1988,10(5):184-189
On biological samples, the topographic imaging capabilities of the new generation of scanning electron microscopes (SEM) (those having both field-emission guns and low aberration lenses) rival those of the replica techniques. In addition, they permit the localization of specific molecules on the sample surface using one of several labeling techniques utilizing heavy metal colloids. Normally, colloidal gold can be detected in the SEM both by the secondary electron signal (shape) and by the backscattered electron signal (BSE, Z-contrast). The new instruments seem to produce their best topographic images using low-beam voltage (1–5 kV) where topographic contrast is higher and the required thickness of the metal coating is less (Haggis and Pawley 1988, Ris and Pawley 1988). Although the detection of backscattered electrons is more difficult at low-beam voltage, we are able to show here that the secondary electron (SE) signal produced with a 2–5-kV beam permits the unambiguous detection of gold particles as small as 5 nm on carbon-coated specimens while a 1-kV beam produces a high-quality topographic image of the same sample.  相似文献   

16.
This study compared the tribological evaluation of chemically modified rapeseed oil as a potential biodegradable automotive lubricant with and without nano- and microscale titanium dioxide (TiO2) particles, focusing on the influence of TiO2 particles to improve the friction reduction and antiwear characteristics of chemically modified rapeseed oil. TiO2 nano- and microscale particles of anatase phase and rutile phase were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Further, the analysis of chemically modified rapeseed oil with and without TiO2 additives was carried out to determine its tribological behavior using a pin-on-disc tribometer. The experimental results showed that the addition of TiO2 nanoparticles exhibited good friction reduction and antiwear properties compared with the addition of microscale TiO2 and without TiO2 additives to chemically modified rapeseed oil. Nanoscale TiO2 is suitable as an antiwear additive in chemically modified rapeseed oil.  相似文献   

17.
Turbulent friction and heat transfer behaviors of dispersed fluids with ultra-micronized metallic particles are experimentally investigated in a circular pipe. Viscosity measurements are also conducted by using a viscometer. Aqueous mixtures with γ-Al2O3 and TiO2 particles of which the mean diameters are 13 and 27 nm, respectively, are used to represent the dispersed fluids. The ranges of Reynolds and Prandtl numbers tested are 104~105 and 5.6~10.7, respectively. The relative viscosity of the dispersed fluid with γ-Al2O3 particles is about two hundred at the 10% volume concentration, while that of the dispersed fluid with TiO2 particles is about twenty at the same volume concentration. Both of the relative viscosities are the unexpected results compared with predictions from classical theory of suspension rheology. Darcy friction factors for the comparatively dilute dispersion fluids used in present study coincide well with Kays correlation for tubulent flow of a single phase fluid, which implies that additional pumping power is not required despite adding solid particles into water. The Nusselt number of both the dispersed fluids for fully developed turbulent flow increases with increasing the volume concentration as well as the Reynolds number as expected. At the maximum volume concentration of 3% approximately, the percentage heat transfer enhancement due to addition of particles for the γ-Al2O3 and TiO2 dispersing fluid systems are 60% and 30%, respectively. Under the range of volume concentration in the present study, the new correlation for turbulent convective heat transfer for both of the dispersed fluids is given by the following equation: Nu=0.021Re0.8Pr.0.5  相似文献   

18.
Fibers that missing specific features and functionalities could be innovated and functionalised via nano additives, in particular metal oxides. Titanium oxide (TiO2) nanoparticles have been added to isotactic polypropylene (iPP) to form iPP/TiO2 nanocomposite fibers. Three samples of iPP/TiO2 fibers were extruded at three extrusion speeds 25, 50, and 78 m/min were considered in this study. Mach–Zehnder interferometer was used to assess the changes in the opto‐mechanical and geometrical parameters of iPP/TiO2 nanocomposite fibers along the fiber axis. The mechanical drawing device along with Mach–Zehnder interferometer was utilized to stretch the filaments to different draw ratios. The effect of mechanical cold drawing and extrusion speed on the optical and physical characteristics of iPP/TiO2 nanocomposite fibers were determined along the fiber axis. The optical and physical variation along the nanocomposite samples were characterized by measuring their refractive indices, birefringence, refractive index profile along the fiber axis. The diffraction of He–Ne laser beam was used to define the variation of the fiber diameter along the fiber axis through their cross‐sectional area and shape. A sample of uniform diameter from neat iPP fibers was used as reference material for studying the variation of the iPP/TiO2 fiber diameter along the fiber axis. As result, the iPP/TiO2 nanocomposite fibers exhibited nonuniform diameters. The dispersion of TiO2 particles in nanocomposite fibers influences the properties' consistency along and across the fiber.  相似文献   

19.
Scanning (atomic) force microscopy (SFM) permits high-resolution imaging of a biological specimen in physiological solutions. Untreated extracellular haemoglobin molecules of the common North American earthworm, Lumbricus terrestris, were imaged in NH4Ac solution using calibrated SFM. Individual molecules and their top and side views were clearly identified and were comparable with the images of the same molecule obtained by scanning transmission electron microscopy (STEM). A central depression, the presumed mouth of the hole, was detected. We analysed 75 individual molecules for their lateral dimensions. Compression varied for different molecules, presumably because of the variation of the interaction between the SFM tip and the protein molecule. Two effective heights which correspond to the heights of the points of the haemoglobin molecules first and last touched by the tip, h1 and h2, respectively, were measured for each protein and ranged between 1.58 and 16.2 nm for h1 and 1.23 and 13.6 nm for h2. The apparent diameter was measured and ranged from 44.9 to 86.6 nm (63.2±10.5 nm, n =75), which is about twice the diameter of the molecule reported by STEM for the top view orientation. The higher the measured effective heights, the worse was the tip convolution effect. In order to determine the tip parameters (semivertical angle, curvature of radius and the cut-off height) and to calibrate images of earthworm haemoglobin molecules, spherical gold particles were scanned as standards. The tip sectional radii at distances of h1 and h2 above the tip apex were subtracted from the apparent diameter of the protein. The calibrated lateral dimension was 29.1 ±3.85 nm, which is close to the reported scanning transmission electron microscopy data 30.0 ±0.8 nm. The results presented here demonstrate that the calibration approach of imaging gold particles is practical and relatively accurate. Calibrated SFM imaging can be applied to the study of other biomacromolecules.  相似文献   

20.
Magnetic domain walls in Nd2Fe14B have been examined using a series of energy‐filtered Fresnel images in the field emission gun transmission electron microscope (FEGTEM). We describe the changes in the intensity distribution of the convergent wall image as a function of defocus, foil thickness and domain wall width. The effect of tilted domain walls and beam convergence on the fringe pattern is also discussed. A comparison of the experimental intensity profile with that from simulations allows the domain wall width to be determined. Measurement of very narrow walls is made possible only by using a relatively thick foil, which necessitates energy‐filtering to allow quantitative comparison with simulations. The magnetic domain wall width in Nd2Fe14B was found to be 3 ± 2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号