首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is concerned with the finite element formulation of a recently proposed geometrically exact shell theory with natural inclusion of drilling degrees of freedom. Stress hybrid finite elements are contrasted by strain hybrid elements as well as enhanced strain elements. Numerical investigations and comparison is carried out for a four-node element as well as a nine-node one. As far as the four-node element is concerned it is shown that the stress hybrid element and the enhanced strain one are equivalent. The hybrid strain formulation corresponds to the hybrid stress formulation only in shear dominated problems, that is the case of the plate. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
本文根据几何非线性不协调元增量变分原理,按严格的壳体方程,建立了高精度的圆柱壳几何非线性20参数矩形精化不协调元RCSR4,并用于圆柱壳非线性初始稳定性分析。计算结果表明,该方法收敛性良好。  相似文献   

3.
The present paper describes an assumed strain finite element model with six degrees of freedom per node designed for geometrically non-linear shell analysis. An important feature of the present paper is the discussion on the spurious kinematic modes and the assumed strain field in the geometrically non-linear setting. The kinematics of deformation is described by using vector components in contrast to the conventional formulation which requires the use of trigonometric functions of rotational angles. Accordingly, converged solutions can be obtained for load or displacement increments that are much larger than possible with the conventional formulation with rotational angles. In addition, a detailed study of the spurious kinematic modes and the choice of assumed strain field reveals that the same assumed strain field can be used for both geometrically linear and non-linear cases to alleviate element locking while maintaining kinematic stability. It is strongly recommended that the element models, described in the present paper, be used instead of the conventional shell element models that employ rotational angles.  相似文献   

4.
A flat shell element based on the free-formulation finite element concept is developed for analysing geometrically non-linear thin composite shells. A corotational form of the updated Lagrangian formulation is utilized. Numerical results for typical validation problems are presented in order to demonstrate the accuracy and validity of this element. These results are obtained by solving the incremental equilibrium equations through the cylindrical arc-length method.  相似文献   

5.
Several simple and accurate C° two-node arch/beam and four-node cylindrical shell/plate finite elements are presented in this paper. The formulation used here is based on the refined theory of thick cylindrical shells and the quasi-conforming element technique. Unlike most C° elements, the element stiffness matrix presented here is given explicitly. In spite of their simplicity, these C° finite elements posseses linear bending strains and are free from the deficiencies existing in curved C° elements such as shear and membrane locking, spurious kinematic modes and numerical ill-conditioning. These finite elements are valid not only for thick/thin beams and plates, but also for arches/straight beams and cylindrical shells/plates. Furthermore, these C° elements can automatically reduce to the corresponding C1 beam and plate elements and give the C° beam element obtained by the reduced integration as a special case. Several numerical examples indicate that the simple two-node arch/beam and four-node cylindrical shell/plate elements given in this paper are superior to the existing C° elements with the same element degrees of freedom. Only the formulation of the rectangular cylindrical shell and plate element is presented in this paper. The formulation of an arbitrarily quadrilateral plate element will be presented in a follow-up paper32.  相似文献   

6.
A C0 continuous displacement based finite element formulation of a higher order theory for linear and geometrically non-linear analysis which accounts for large displacements in the sense of von Karman of symmetrically laminated composite and sandwich shells under transverse loads is presented. The displacement model accounts for non-linear and constant variation of tangential and transverse displacement components, respectively, through the shell thickness. The assumed displacement model climinates the use of shear correction coefficients. The discrete element chosen is a nine-node quadrilateral element with nine degress of freedom per node. The accuracy of the present formulation is then established by comparing the present results with the available analytical. closed-form two-dimensional solutions, three-dimensional elasticity solutions and other finite element solutions. Some new results are generated for future comparisons to and evaluations of sandwich shells.  相似文献   

7.
This paper presents a robust non-linear piezoelectric exact geometry (EG) four-node solid-shell element based on the higher-order 9-parameter equivalent single-layer (ESL) theory, which permits one to utilize 3D constitutive equations. The term EG reflects the fact that coefficients of the first and second fundamental forms of the reference surface are taken exactly at each element node. The finite element formulation developed is based on a new concept of interpolation surfaces (I-surfaces) inside the shell body. We introduce three I-surfaces and choose nine displacements of these surfaces as fundamental shell unknowns. Such choice allows us to represent the finite rotation piezoelectric higher-order EG solid-shell element formulation in a very compact form and to utilize in curvilinear reference surface coordinates the strain-displacement relationships, which are objective, that is, invariant under arbitrarily large rigid-body shell motions. To avoid shear and membrane locking and have no spurious zero energy modes, the assumed displacement-independent strain and stress resultant fields are introduced. In this connection, the Hu-Washizu variational equation is invoked. To implement the analytical integration throughout the element, the modified ANS method is applied. As a result, the present finite rotation piezoelectric EG solid-shell element formulation permits the use of coarse meshes and very large load increments.  相似文献   

8.
The present article focuses on the nonlinear finite element simulation and control of large amplitude vibrations of smart piezolaminated composite structures. Full geometrically nonlinear finite rotation strain–displacement relations and Reissner–Mindlin first-order shear deformation hypothesis to include the transverse shear effects are considered to derive the variational formulation. A quadratic variation of electric potential is assumed in transverse direction. An assumed natural strain method for the shear strains, an enhanced assumed strain method for the membrane strains and an enhanced assumed gradient method for the electric field is incorporated to improve the behavior of a four-node shell element. Numerical simulations presented in this article show the accurate prediction capabilities of the proposed method, especially for structures undergoing finite deformations and rotations, in comparison to the results obtained by simplified nonlinear models available in references and also with those obtained by using the C3D20RE solid element for piezoelectric layers in the Abaqus code.  相似文献   

9.
A reformulated four-node shell element, based on the analysis of the moment redistribution mechanism development by C0 plate bending and shell elements, is presented. The moment redistribution mechanism of a finite shell element model is shown to be predominantly activated by the membrane flexural action of the shell. This action is triggered through the membrane strain components which participate in the moment equilibrium equations of the finite element assembly system. An equivalent elastic foundation action, along with the activation of the in-plane twisting stiffness of the shell, may also contribute to the moment redistribution mechanism of the finite shell element model. The proposed shell element formulation aims at retaining the non-spurious contribution of the transverse shear/membrane strain energy to the flexural behaviour of the shell, through the activation of the moment redistribution mechanism. Yet, any potentially spurious, whether locking or kinematic, mechanism is rejected. In warped configurations, the element activates appropriate coupling mechanisms of the bending terms to nodal translations. The so-obtained reformulated four-node shell element exhibits an excellent behaviour without experiencing any locking phenomena or zero-energy modes, while its formulation is kept simple, based on physical considerations. The proposed formulation performs equally well in flat as well as in warped shell element applications.  相似文献   

10.
The present paper describes a hybrid stress finite element formulation for geometrically non-linear analysis of thin shell structures. The element properties are derived from an incremental form of Hellinger-Reissner's variational principle in which all quantities are referred to the current configuration of the shell. From this multi-field variational principle, a hybrid stress finite element model is derived using standard matrix notation. Very simple flat triangular and quadrilateral elements are employed in the present study. The resulting non-linear equations are solved by applying the load in finite increments and restoring equilibrium by Newton-Raphson iteratioin. Numerical examples presented in the paper include complete snap-through buckling of cylindrical and spherical shells. It turns out that the present procedure is computationally efficient and accurate for non-linear shell problems of high complexity.  相似文献   

11.
An axisymmetrical shell element for large deformations is developed by using Ogden's non-linear elastic material law. This constitutive equation, however, demands the neglect of transverse shear deformations in order to yield a consistent theory. Therefore, the theory can be applied to thin shells only. Eventually a ‘quasi-Kirchhoff-type theory’ emerges. Within this approach the computation of the deformed director vector d is a main assumption which is essential to describe the fully non-linear bending behaviour. Furthermore, special attention is paid to the linearization procedure in order to obtain quadratic convergence behaviour within Newton's method. Finally, the finite element formulation for a conical two-node element is given. Several examples show the applicability and performance of the proposed formulation.  相似文献   

12.
Aim of this paper is to develop a new shape memory alloy (SMA) facet-shell finite element accounting for material and geometric nonlinearities. A corotational formulation is exploited, able to filter out large rigid-body motions from the element transformation. Accordingly, a geometrically linear core-element is employed, along with a SMA constitutive model formulated in the small strain framework. In particular, in accordance with the formulation of the classical thin shell theory, a plane-stress SMA model accounting for the pseudo-elastic as well as the shape memory effect is adopted. The time integration of the evolutive equation is performed developing a step-by-step backward-Euler numerical procedure. A highly efficient implementation of the corotational machinery is used, endowed with a fully consistent tangent stiffness. Applications are carried out for assessing the performances of the developed computational procedure and to investigate on some interesting engineering examples. The numerical results show the effectiveness of the proposed shell element, whose simplicity makes it attractive for the design of new advanced SMA-based devices undergoing significant configuration changes during their operation.  相似文献   

13.
The development of the formulation for a highly adaptable hexahedral shell finite element is presented in this paper. A basic 18-node isoparametric hexahedral element is adopted as the basis of the formulation. Potential strategies to alleviate transverse shear, trapezoidal, thickness and membrane locking are investigated, in several combinations, using a wide variety of geometrically linear benchmarks. The most promising approach is further assessed using geometrically non-linear shell and plate problems. The recommended ANS-formulation performs well against an extensive range of benchmarks, and continues to be accurate at an aspect ratio of 1:10,000.  相似文献   

14.
This paper deals with the geometrically non-linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuators or sensors layers and/or patches. The motivation for the present developments is the lack of studies in the behavior of adaptive structures using geometrically non-linear models, where only very few published works were found in the open literature.

The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings.

The finite element model is a non-conforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric layer or patch.

An updated Lagrangian formulation associated to Newton–Raphson technique is used to solve incrementally and iteratively the equilibrium equations.

The model is applied in the solution of four illustrative cases, and the results are compared and discussed with alternative solutions when available.  相似文献   


15.
We discuss both linear and geometrically non-linear finite element analysis of elastic beams, taking into account the shear deformation. In linear analysis, a novel shallow beam element formulaton is consistently derived, and the end result is more suitable for the finite element implementation than earlier attempts. The element is very resourceful for an explanation of membrane and shear locking phenomena and exploration of their possible remedies. In addition, it sheds some light on locking phenomena in non-linear analysis. In non-linear analysis, we discuss the finite element implementation of the finite strain beam theory of Reissner.  相似文献   

16.
A co-rotational finite element formulation for the dynamic analysis of planar Euler beam is presented. Both the internal nodal forces due to deformation and the inertia nodal forces are systematically derived by consistent linearization of the fully geometrically non-linear beam theory using the d'Alembert principle and the virtual work principle. Due to the consideration of the exact kinematics of Euler beam, some velocity coupling terms are obtained in the inertia nodal forces. An incremental-iterative method based on the Newmark direct integration method and the Newton–Raphson method is employed here for the solution of the non-linear dynamic equilibrium equations. Numerical examples are presented to investigate the effect of the velocity coupling terms on the dynamic response of the beam structures.  相似文献   

17.
A total Lagrangian finite element formulation for the geometrically nonlinear analysis (large displacement/large rotations) of shells is presented. Explicit expressions of all relevant finite element matrices are obtained by means of the definition of a local co-ordinate system, based on the shell principal curvature directions, for the evaluation of strains and stresses. A series of examples of nonlinear analysis of shell and plate structures is given.  相似文献   

18.
In this paper we introduce the finite element version of the so-called post-processed Galerkin method into the field of solid mechanics and apply the new technique to the dynamics of shells. The proposed post-processed method provides low-cost means to lift low-dimensional solutions to high-dimensional solutions. It is the very fact that the kinematical fields are improved to higher orders which makes the method of great interest. Our shell theory is geometrically exact in the sense that all non-linearities are included in the formulation. For time integration an energy/momentum scheme is used to enhance integration stability. Two hierarchical enhanced finite elements are formulated, on the basis of which a specific post-processed method is then developed. With the help of some examples of non-linear shell vibrations, a critical examination and validation of the post-processed method is carried out.  相似文献   

19.
20.
A nine node finite element model has been developed for analysis of geometrically non-linear laminated composite shells. The formulation is based on the degenerate solid shell concept and utilizes a set of assumed strain fields as well as assumed displacement Two different local orthogonal co-ordinate systems were used to maintain invariance of the element stiffness matrix. The formulation assumes strain and the determinant of the Jacobian matrix to be linear in the thickness direction. This allows analytical integration in the thickness direction regardless of ply layups. The formulation also allows the reference plane to be different from the shell midsurface. The results of numerical tests demonstrate the validity and the effectiveness of the present approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号