首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the 1890-bp sequence located upstream of the HEM2 gene of Saccharomyces cerevisiae. The following potential regulatory protein-binding motifs were found: ABF1-binding site, yAP1-binding site, two REB1-binding sites, a cyclic AMP-responsive element, RAP1-binding site, and several HAP2-HAP3-HAP4 binding sites, implicating a complex regulatory mechanism governing expression for the HEM2 gene.  相似文献   

2.
In Saccharomyces cerevisiae the GCR1 gene product is required for high-level expression of genes encoding glycolytic enzymes. In this communication, we extend our analysis of the DNA binding properties of Gcr1p. The DNA-binding domain of Gcr1p binds DNA with high affinity. The apparent dissociation constant of the Gcr1p DNA-binding domain for one of its specific binding sites (TTTCAGCTTCCTCTAT) is 2·9×10−10 M. However, competition experiments showed that Gcr1p binds this site in vitro with a low degree of specificity. We measured a 33-fold difference between the ability of specific competitor and DNA of random sequence to inhibit the formation of nucleoprotein complexes between Gcr1p and a radiolabeled DNA probe containing its binding site. DNA band-shift experiments, utilizing probes of constant length in which the positions of Gcr1p-binding sites are varied relative to the ends, indicated that Gcr1p–DNA nucleoprotein complexes contain bent DNA. The implications of these findings in terms of the combinatorial interactions that occur at the upstream activating sequence elements of genes encoding glycolytic enzymes are discussed.  相似文献   

3.
REC102 is a meiosis-specific early exchange gene absolutely required for meiotic recombination in Saccharomyces cerevisiae. Sequence analysis of REC102 indicates that there are multiple potential regulatory elements in its promoter region, and a possible regulatory element in the coding region. This suggests that the regulation of REC102 may be complex and may include elements not yet reported in other meiotic genes. To identify potential cis-regulatory elements, phylogenetic footprinting analysis was used. REC102 homologues were cloned from other two Saccharomyces spp. and sequence comparison among the three species defined evolutionarily conserved elements. Deletion analysis demonstrated that the early meiotic gene regulatory element URS1 was necessary but not sufficient for proper regulation of REC102. Upstream elements, including the binding sites for Gcr1p, Yap1p, Rap1p and several novel conserved sequences, are also required for the normal regulation of REC102 as well as a Rap1p binding site located in the coding region. The data in this paper support the use of phylogenetic comparisions as a method for determining important sequences in complex promoters.  相似文献   

4.
5.
Binding of zinc by glycinin was determined in 0.5 M KCl at pH 6.2. The number of binding sites in the native protein was 51 for 8.5 μM glycinin. Protein modification studies identified the histidine residues as one of the binding sites, and comparison with published data on the histidine content of glycinin suggests that the majority of these residues are on the surface of the protein. Denaturation by 6 M urea increased the number of binding sites to 330. The number of zinc binding sites was found to vary with the protein concentration in 0.5 M KCl. The affinity of zinc for the protein varied with the protein concentration. Increasing the KCl concentration to 1.0 M decreased the affinity of zinc for the protein and increased the number of binding sites. Zinc preferentially binds to EDTA rather than to glycinin. Binding at pH 5.5 resulted in a reduction in the number of binding sites to 23. Ultracentrifugal analysis of glycinin in the presence and absence of zinc gave S20, W values of 13.1 and 11.1, respectively. Calcium and magnesium did not bind to glycinin in 0.5 M KCl at pH 6.2.  相似文献   

6.
7.
The repressor activator protein 1 (RAP1) plays a role in telomere structure and function inS. cerevisiae. Here, the RAP1 homologue was identified and cloned from the budding yeast Saccharomyces castellii (scasRAP1). The scasRAP1 gene encodes a protein of 826 amino acids and shares an overall high degree of similarity with the S. cerevisiae RAP1 (scerRAP1). We demonstrate that the scasRAP1 is able to complement scerRAP1 in temperature-sensitive S. cerevisiae strains and is able to function as a regulator to maintain the original telomere lengths. Binding analyses of the E. coli-expressed scasRAP1 protein demonstrate that it needs two consecutive telomeric repeats in order to bind the S. castellii telomeric DNA sequences, and that it binds adjacent sites having a 16 bp centre-to-centre spacing. The binding affinity to telomeric DNA of several other yeasts is similar to that of scerRap1p. However, in contrast to scerRap1p, scasRap1p was found to bind the human telomeric sequence. Moreover, the scasRap1p was found to incorporate a variant repeat in its binding to the otherwise homogeneous telomeric DNA of S. castellii. This ability to bind various sites differing in DNA sequence indicates a high degree of adjustability in the binding of scasRap1p to DNA.  相似文献   

8.
We have sequenced a region of 51 kb of the right arm from chromosome XV of Saccharomyces cerevisiae. The sequence contains 30 open reading frames (ORFs) of more than 100 amino acid residues. Thirteen new genes have been identified. Thirteen ORFs correspond to known yeast genes. One delta element and one tRNA gene were identified. Upstream of the RPO31 gene, encoding the largest subunit of RNA polymerase III, lies a Abf1p binding site. The nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDBJ nucleotide sequence databases under the Accession Number X90518.  相似文献   

9.
The RAD14 gene of Saccharomyces cerevisiae is required for the incision step of the nucleotide excision repair process. The Rad14 protein can bind zinc, possesses a potential zinc finger DNA binding domain and has been shown to bind specifically to damaged DNA. Differences in UV sensitivity exist between a rad14 deletion strain and a putative rad14 point mutant, the point mutant being more resistant to UV than the deletion strain. Here, we confirm that the rad14 deletion strain repairs neither UV-induced cyclobutane pyrimidine dimers (CPDs) nor endonuclease III-sensitive damage sites, whereas the point mutant cannot repair the former but can repair the latter. From this it can be inferred that the point mutant produces an altered protein product allowing recognition of endonuclease III sensitive sites but not CPDs. To investigate this, the rad14 mutant allele was sequenced. It contained two GC-AT transition mutations when compared to the wild-type RAD14 gene sequence. When the rad14 point mutant sequence is translated, alterations within the putative zinc finger binding domain are observed, with one of the cysteine residues of the zinc binding motif being replaced by tyrosine. This suggests that alterations within the zinc finger binding domain of the Rad14 protein cause changes to the damage recognition properties of the protein. The use of the Rad14 protein from the point mutant should assist in experiments investigating the in vitro binding properties of the Rad14 protein to different types of DNA damage. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
SS III (SSIII) has been reported to play a regulatory role in the synthesis of transient starch. SSIII from Arabidopsis thaliana contains 1025 amino acid residues and has an N‐terminal transit peptide for chloroplast localization followed by three in tandem starch‐binding domains (SBDs D1, D2, and D3, residues 22‐591). Its C‐terminal catalytic domain (residues 592–1025) is similar to bacterial glycogen synthase. Binding studies to raw starch and its individual components, AM or AP show that the SBD region binds preferentially to AM, and that the D1 domain is mainly responsible for this selective binding. The D2 domain contains two binding sites which include amino acid residues Y394 (binding site 1) and W366 (binding site 2) acting cooperatively with the D1 domain in the binding process while G335 and W340 have a minor role. In addition, mutations in these residues also affect the kinetic parameters for the polysaccharide substrate of SSIII.  相似文献   

11.
12.
13.
14.
The abundant DNA-binding proteins ABF1 and CPF1 are members of a family of global regulators with diverse chromosomal functions in the yeast Saccharomyces cerevisiae. Recent evidence suggests that these protein factors may be involved in establishing and maintaining well-defined chromatin structures in promoter regions and other genetic elements. We have investigated the involvement of ABF1 and CPF1 in chromatin organization at the QCR8 gene, encoding subunit VIII of the mitochondrial ubiquinol-cytochrome c oxidoreductase. The promoter region of the QCR8 gene contains overlapping binding sites for ABF1 and CPF1. Nucleosome positioning studies indicate that the QCR8 gene is associated with a phased array of nucleosomes under both catabolite-repressed and derepressed growth conditions. Analysis of binding site mutants reveals that both ABF1 and CPF1 are involved in maintaining a nuclease-hypersensitive region in the QCR8 promoter. The chromatin structure at QCR8 during steady-state growth is, however, mainly dependent on binding of ABF1 to the promoter region. Implications of these findings for the role played by ABF1 and CPF1 in the regulation of mitochondrial biogenesis and other processes important for cell growth and division will be discussed.  相似文献   

15.
16.
As part of the European BIOTECH programme, the nucleotide sequence of a 16691bp fragment from the left arm of chromosome IV of Saccharomyces cerevisiae has been deduced. Analysis of the sequence reveals the presence of 13 open reading frames (ORFs) larger than 100 codons. Five of these were previously identified as genes DUN1, PMT1, PMT5, SRP14 and DPR1. One putative protein, D2371p, contains an ATP-GTP binding site, and shares homology to the ArsA component of an Escherichia coli arsenical pump. No significant homology to any known protein has been found for the other ORFs. D2378p contains a zinc finger domain. The nucleotide sequence has been deposited at EMBL, with Accession Number X95644.  相似文献   

17.
18.
19.
In the framework of the European Union BIOTECH project for systematically sequencing the Saccharomyces cerevisiae genome, we determined the nucleotide sequence of a 43·7 kb DNA fragment spanning the centromeric region of chromosome XII. A novel approach was the distribution of sublibraries prepared by the DNA coordinator (J. Hoheisel, Heidelberg, FRG), using a new hybridization-based DNA mapping method, in order to facilitate ordered sequencing. The sequence contains 22 open reading frames (ORFs) longer than 299 bp, including the published sequences for ATS/DPS1, SCD25, SOF1, DRS1, MMM1, DNM1 and the centromeric region CEN12. Five putative ORF products show similarity to known proteins: the leucine zipper-containing ABC transporter L1313p to the yeast Ycf1p metal resistance protein, to the yeast putative ATP-dependent permease Yhd5p, to the yeast putative proteins Yk83p and Yk84p, to the human cystic fibrosis transmembrane conductance regulator protein (hCFTR) and to the human multidrug resistance-associated protein hMRP1; L1325p to the Drosophila melanogaster Pumilio protein, to the putative yeast regulatory protein Ygl3p and to the yeast protein Mpt5p/Htr1p; L1329p to human lipase A and gastric lipase, to rat lingual lipase and to the putative yeast triglyceride lipase Tgl1p; L1341p to the putative yeast protein Yhg4p; and the leucine zipper-containing L1361p to the two yeast proteins 00953p and Ym8156.08p and to the Arabidopsis thaliana protein HYP1. Eight ORFs show no homology to known sequences in the database, three small ORFs are internal and complementary to larger ones and L1301 is complementary overlapping the ATS/DPS1 gene. Additionally three equally spaced ARS consensus sequences were found. The nucleotide sequence reported here has been submitted to the EMBL data library under the accession number X91488.  相似文献   

20.
Protein allergens can be related by cross‐reactivity. Allergens that share relevant sequence can cross‐react, those lacking sufficient similarity in their IgE antibody‐binding epitopes do not cross‐react. Cross‐reactivity is based on shared epitopes that is based on shared sequence and higher level structure (charge and shape). Epitopes are important in predicting cross‐reactivity potential and may provide the potential to establish criteria that identify homology among allergens. Selected allergen's IgE‐binding epitope sequences were used to determine how the FASTA algorithm could be used to identify a threshold of significance. A statistical measure (expectation value, E‐value) was used to identify a threshold specific to identifying cross‐reactivity potential. Peanut Ara h 1 and Ara h 2, shrimp tropomyosin Pen a 1, and birch tree pollen allergen, Bet v 1 were sources of known epitopes. Each epitope or set of epitopes was inserted into random amino acid sequence to create hypothetical proteins used as queries to an allergen database. Alignments with allergens were noted for the ability to match the epitope's source allergen as well as any cross‐reactive or other homologous allergens. A FASTA expectation value range (1 × 10?5–1 × 10?6) was identified that could act as a threshold to help identify cross‐reactivity potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号