首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel tetrafunctional epoxy resin containing siloxane and imide groups, i.e., N,N,N′,N′-tetraglycidyl-bis(4-aminophenyl)-5,5′ (1,1,3,3-tetramethyl-1,1,3,3-disiloxane-bisnorbornane-2,3-dicaroximide, was synthesized and characterized. The curing behavior of this resin and the properties of its cocured material with commercial tetraglycidyl meta-xylene (GA-240) was studied. Functional group changes during cocuring reactions were investigated with FTIR. Kinetic parameters were analyzed with dynamic DSC. Thermal properties were measured with TGA, TMA and DMA. Curing kinetics revealed that this novel tetrafuctinal epoxy indicated a lower activation energy and lower curing temperature than GA-240. The cocured materials, due to the presence of siloxane and imide groups in the polymer matrix, show higher glass transition temperature, better dimensional stability and toughness, and also enhanced properties than pure GA-240.  相似文献   

2.
A new soften curing agent for toughening epoxy resins was synthesized by m-phenylene diamine modified with epoxypropyl butyl ether. The curing processes of epoxy resin/modified m-phenylene diamine were traced by differential scanning calorimetry (DSC), then kinetic parameters, ΔE and n, were deduced. Fourier transform infrared (FTIR) analysis showed that the longer the reaction time was, the smaller the absorption peaks of epoxy group were. The results of the mechanical properties demonstrated that the impact property of the epoxy resin cured by modified m-phenylene diamine at the moderate temperature was better than that of cured by unmodified one because of the introduction of soft ether chain. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Summary. The effect of amine/epoxy ratio on the fracture toughness (KIc) of tetrafunctional epoxy resin was investigated. KIc value was measured by single-edge notch-bend test. The KIc value of the tetrafunctional epoxy resin increased with increasing the amount of amine curing agent. This result was explained with the structural viewpoint of the epoxy network. The network structure of the tetrafunctional epoxy was analyzed with dynamic thermomechanical measurement and in-situ near IR technique. Received: 19 June 1997/Accepted: 17 Juli 1997  相似文献   

4.
A low viscosity tetrafunctional epoxy resin was synthesized by reacting amino-terminated polydimethylsiloxane with epichlorohydrin followed by dehydrohalogenation. The synthesized tetrafunctional aliphatic epoxy resin had an epoxy equivalent weight of 382, Mn of 1492, Mw of 2296, and a viscosity of 4.2 poise at 25°C. The chemical structure of the tetrafunctional aliphatic epoxy resin was studied by gel permeation chromatography (GPC), Fourier transform infrared spectra (FTIR), and 1H-NMR spectra. Results showed the tetrafunctional aliphatic epoxy-blended aromatic epoxy resin possessed high impact strength and flexural strength. SEM photographs were investigated to study the compatibility of the blended epoxy system. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 51–58, 1998  相似文献   

5.
A high performance copolymer was prepared by using epoxy (EP) resin as matrix and 3,10,17,24-tetra-aminoethoxy lead phthalocyanine (APbPc) as additive with dicyandiamide as curing agent. Fourier-transform infrared spectroscopy, dynamic mechanical analysis (DMA), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TGA) were used to study the curing behavior, curing kinetics, dynamic mechanical properties, impact and tensile strength, and thermal stability of EP/APbPc blends. The experimental results show that APbPc, as a synergistic curing agent, can effectively reduce the curing temperature of epoxy resin. The curing kinetics of the copolymer was investigated by non-isothermal DSC to determine kinetic data and measurement of the activation energy. DMA, impact, and tensile strength tests proved that phthalocyanine can significantly improve the toughness and stiffness of epoxy resin. Highest values were seen on the 20 wt% loading of APbPc in the copolymers, energy storage modulus, and impact strength increased respectively 388.46 MPa and 3.6 kJ/m2, Tg decreased 19.46°C. TGA curves indicated that the cured copolymers also exhibit excellent thermal properties.  相似文献   

6.
Bisphenol‐A glycidyl ether epoxy resin was modified using reactive poly(ethylene glycol) (PEO). Dynamic mechanical analysis showed that introducing PEO chains into the structure of the epoxy resin increased the mobility of the molecular segments of the epoxy network. Impact strength was improved with the addition of PEO at both room (RT) and cryogenic (CT, 77 K) temperature. The curing kinetics of the modified epoxy resin with polyoxypropylene diamines was examined by differential scanning calorimetry (DSC). Curing kinetic parameters were determined from nonisothermal DSC curves. Kinetic analysis suggested that the two‐parameter autocatalytic model suitably describes the kinetics of the curing reaction. Increasing the reactive PEO content decreased the heat flow of curing with little effect on activation energy (Ea), pre‐exponential factor (A), or reaction order (m and n). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Differential scanning calorimetric (DSC) curing kinetics of the epoxy systems composed of conventional, tetrafunctional, and phosphorylated epoxy resins were investigated using different anhydrides as curing agents and triethylamine as curing catalyst. The dynamic scans were analyzed to estimate the activation energy and the order of reaction for the curing process using some empirical relations. The thermal stability of the cured epoxy resins was studied by thermogravimetric analysis in nitrogen atmosphere at a heating rate of 10°C/min. Glass fiber reinforced composites were fabricated and evaluated for their limiting oxygen index, mechanical properties, dielectric properties, and chemical resistance. The incorporation of an epoxy fortifier showed significant improvement in mechanical properties.  相似文献   

8.
The mechanism and kinetics of curing of epoxy resin with poly(m‐phenylene methylphosphonate) (PMP) was studied by extraction and swelling experiments, DSC, 31P NMR, and FTIR. It was shown that at linear heating of 20°C/min PMP cures bisphenol A type epoxy resin at 230–300°C, whereas in the presence of catalytic amount of 2‐methyl imidazole the curing occurs at 200–230°C. Under isothermal conditions, epoxy resin was cured with PMP after 40–70 min at 150°C. An unusual mechanism of curing due to opening and insertion of epoxy into the phosphonate bond was suggested. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4011–4022, 2006  相似文献   

9.
Hua Ren  Binjie Wu  Qiyun Zhou 《Polymer》2006,47(25):8309-8316
A new epoxy resin containing both naphthalene and dicyclopentadiene (DCPD) groups was synthesized to produce a highly heat-resistant network, and the curing behavior was investigated using diaminodiphenylsulfone (DDS) as curing agent. The chemical structures were characterized with FTIR spectroscopy, NMR, MS, and GPC analyses. Dynamic curing behavior was investigated using differential scanning calorimetry (DSC). The physical properties of the resulting polymers were evaluated with dynamic thermal mechanical analyses (DMTA) and thermogravimetric analyses (TGA). The cured polymer showed great improvement in heat-resistant property including remarkably higher glass transition temperature (Tg) and thermal stability. Such properties make this new epoxy resin highly promising for heat-resistant applications.  相似文献   

10.
The cure kinetics of tetrafunctional epoxy resins with three different backbone structures and their modification by polydimethylsioxane (PDMS) were studied by means of differential scanning calorimetry with dynamic approach. The development of epoxy networks was characterized by dynamic viscoelastic measurements. Results showed that all the epoxy resins obeyed the autocatalytic reaction mechanism with a reaction order of about 3. Epoxy resin with softer aliphatic backbone demonstrated a higher cure reactivity and stronger tendency towards autocatalysis, as well as lower crosslinking density. The PDMS‐modified epoxy resins showed higher early cure reactivity and a lower crosslinking density due to the plasticization and restriction effect of the dispersed PDMS phase, respectively. Based on cure kinetics and dynamic viscoelastic results, the αm was found to be an effective precursor for describing the developing of epoxy networks during the course of cure. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
谭家顶  程珏  郭晶  张军营 《化工学报》2011,62(6):1723-1729
固化剂结构对环氧树脂的固化行为和固化物性能具有重要影响,本文研究了聚醚胺(D-230)、异佛尔酮二胺(IPDA)和3,3'-二甲基-4,4'-二氨基-二环己基甲烷(DMDC) 3种胺类固化剂与实验室自制的低翻度环氧树脂A进行固化反应.通过薪度分析、红外(FTIR)光谱分析、DSC分析等手段研究了环氧树脂与固化剂反应程度...  相似文献   

12.
以液体环氧树脂与固体环氧树脂混配,4,4′-二氨基二苯砜(DDS)为固化剂,加入聚酰胺酸(PAA)对固液混配环氧树脂进行改性,采用刮膜法制备环氧树脂胶膜.通过DSC分析、平板拉丝法和傅里叶转换红外光谱法,研究了环氧树脂固液比、PAA用量等对环氧树脂胶膜成膜性、同化温度和同化速率的影响,并探索了PAA对环氧树脂/DDS体系固化反应的作用机理.结果表明,PAA可提高环氧树脂胶膜韧性,可降低固化温度,加快固化速度.对于环氧树脂(固/液质量比为50/50)/DDS/PAA体系,当PAA质量分数5%时,同化起始温度由未加PAA时的175.9℃下降到138.8℃,140℃时的固化凝胶时间由162 min下降到46 min,体系由高温固化变为近中温固化.  相似文献   

13.
Fire-resistant compositions were prepared using 1-[di(2-chloroethoxyphosphinyl)methyl]-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and MY 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4′-diaminodiphenyl-sulfone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential scanning calorimetry (DSC), was of the order MPD > DCEPD > DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects. It was shown that the heat of polymerization (ΔHpol) increases with increasing epoxy functionality of the resin. The polymers obtained were characterized by DSC, thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Fourier-transform infrared (FT-IR). The polymers of DCEPD showed a relatively lower polymer decomposition temperature (PDT) and a higher char yield than the polymers of the common curing agents. Furthermore, it was shown that the thermal characteristics of the compositions were dependent upon the ratio of the reactants. The fire resistance of the polymers was evaluated by determining their limiting oxygen index (LOI) value. The DCEPD polymers, especially those with polyfunctional epoxy resins, showed a significantly higher fire resistance as compared with those polymers of common curing agents.  相似文献   

14.
Epoxy resin nanocomposites reinforced with three different ionic liquid functionalized carbon nanotubes (f-CNTs) were fabricated by an in situpolymerization method. The influence of the anions on the curing process was studied through differential scanning calorimetry (DSC) and normalized Fourier transform infrared (FTIR) spectroscopy. The composition of the nanocomposites was analyzed by X-ray photoelectron spectroscopy. Two different mechanisms are proposed to explain the curing process of the neat epoxy and its composites. The electric conductivity and mechanical properties of the nanocomposites are also reported. The tensile strength was increased dramatically due to the insertion of f-CNTs. Scanning electron microsopy fracture surface analysis indicates a strong interfacial bonding between the carbon nanotubes and the polymer matrix.  相似文献   

15.
Prepregs of a mixture of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM) and the tetrafunctional amine 4,4'-diaminodiphenylsulfone (DDS) were characterized with temperature-modulated DSC (TMDSC) as well as dynamic mechanical analysis (DMA). The baseline shift of the glass transition was separated from the curing exotherm by using temperature-modulated and step scan DSC temperature scans. Likewise, the baseline shift in heat capacity due to vitrification was isolated using TMDSC isotherms. Using the TMDSC glass transition temperature, degree of conversion, and vitrification results, combined with the gelation data generated from DMA, a time-temperature-transformation (TTT) diagram was constructed, providing information necessary for optimization of industrial processing of the epoxy prepreg. Thus, effects of storage, preprocessing, and postprocessing on the overall curing process are taken into account.  相似文献   

16.
Curing kinetics of DGEAC/DDM/DETDA/DGEB epoxy resin system was studied using dynamic and isothermal differential scanning calorimetry (DSC) for the preparation of T800 carbon fiber filament wound composites. In dynamic experiment, four kinds of epoxy resin systems were studied. Curing characteristics, such as curing range and curing temperatures of the epoxy resin system with mixed hardeners (DGEAC/DDM/DETDA), were found lying within those of the two epoxy resin systems with a single hardener (DGEAC/DDM, DGEAC/DETDA). The addition of reactive diluter (DGEB) caused increase in curing range and exothermic heat. In addition, the activation energies calculated by the isoconversional method of all four resin systems decreased to the minimum value in the early stage due to the autocatalytic role of hydroxyl groups in the curing reaction and then increased due to the increased viscosity and crosslink of epoxy systems. The addition of reactive diluter led to the decrease in activation energies on the initial stage (conversion = 0.1–0.3). In isothermal experiment, a series of isothermal DSC runs provided information about the curing kinetics of the DGEAC/DDM/DETDA/DGEB system over a wide temperature range. The results showed that the isothermal kinetic reaction of the epoxy resin followed an autocatalytic kinetic mechanism. The autocatalytic kinetic expression chosen in this work was suitable to analyze the curing kinetics of this system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The curing behavior of epoxy resin prepared by reacting epichlorohydrin with amine functional aniline acetaldehyde condensate (AFAAC) was investigated using AFAAC as a curing agent. The epoxy resin, {2,6‐bis‐[2‐(bis‐oxiranylmethyl‐amino)‐methylbenzyl]‐phenyl}‐bis‐oxiranylmethylamine (BPBOMA), was characterized by FTIR and 1H‐NMR spectroscopy, viscosity measurement, and determination of epoxy content. Analysis of the curing reaction was followed by differential scanning calorimetry (DSC) analysis. To investigate the curing kinetic with AFAAC, dynamic DSC scans were made at heating rates of 5, 10, 15, and 20°C/min. The activation energy and frequency factor of the AFAAC formulation were evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3168–3174, 2006  相似文献   

18.
异氰酸酯/环氧树脂的固化机理   总被引:2,自引:0,他引:2  
左浚茹  程珏  林欣  张军营 《化工学报》2012,63(8):2629-2634
详细研究了异氰酸酯/环氧树脂体系的固化反应和固化机理。采用差示扫描量热法(DSC)和红外光谱法(FTIR)跟踪了异氰酸酯/环氧树脂固化反应过程,定量分析了异氰酸酯、环氧基团和新生成的异氰脲酸酯和口恶唑烷酮的变化。DSC分析结果表明,DSC曲线上出现3个放热峰,说明固化过程中存在至少3种反应;FTIR分析结果表明,在140℃以下固化体系主要发生异氰酸酯的三聚反应生成三嗪环(异氰脲酸酯);在200℃下,异氰酸酯-NCO基团与环氧基团开环反应生成口恶唑烷酮;在230℃ 下,三嗪环(异氰脲酸酯)进一步与环氧基团开环反应生成口恶唑烷酮。研究了不同温度下环氧基团、异氰酸酯基团、异氰脲酸酯基团、口恶唑烷酮基团随反应时间的变化规律。  相似文献   

19.
A novel imidazole derivative (named as EMI‐g‐BGE) was synthesized through the reaction of 2‐ethyl‐4‐methyl imidazole (EMI) and butyl glycidyl ether (BGE) and characterized by elemental analysis, FTIR spectroscopy, and 1H NMR spectroscopy. The curing kinetic of diglycidyl ether of bisphenol A (DGEBA) epoxy resin with EMI‐g‐BGE as curing agent was studied by nonisothermal DSC technique at different heating rates. Dynamic DSC scans indicated that EMI‐g‐BGE was an effective curing agent of epoxy resin. The apparent activation energy Ea was 71.8 kJ mol?1 calculated through Kissinger method, and the kinetic parameters were determined by Málek method for the kinetic analysis of the thermal treatment obtained by DSC measurement. A two‐parameter (m, n) autocatalytic model (?esták‐Berggren equation) was found to be the most adequate selected kinetic model. In addition, the predicted curves from the kinetic model fit well with the nonisothermal DSC thermogram. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
以十二烷基卞基二甲基氯化铵(1227)处理的纤维状有机海泡石(o-SEP)和环氧树脂(E-51)为研究对象,通过高速剪切(均质乳化机)和溶液球磨法制备了新型O-SEP增强的环氧树脂基复合材料,采用X射线衍射、傅立叶变换红外光谱仪、扫描电镜以及透射电镜表征分析了其结构,测试了力学性能。并通过差示扫描量热仪(DSC)研究了其动态固化过程。结果表明,海泡石纤维对1227具有良好的吸附性,处理后的海泡石纤维与环氧树脂的界面相容性大大改善,体系的力学性能明显提高,在添加量为0.5%~1%(质量分数,下同)时,环氧树脂/O-SEP复合材料的冲击强度由32.1kJ/m^2提高到37.5kJ/m^2,提高了近17%;弯曲强度也由123.8MPa提高到128.4MPa,提高3.7%。将环氧树脂和O-SEP在溶液中球磨细化处理后,断裂的海泡石纤维晶与基体的界面相容性变差,并有极少量未分散开的断裂海泡石纤维团聚体存在,复合材料的力学性能下降。DSC测试结果表明,O-SEP加入环氧树脂后,除在低温阶段对固化反应具有微弱催化作用外,对整个动态固化反应过程没有太大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号