首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that mutations in the yeast KNR4 gene resulted in pleiotropic cell wall defects, including resistance to killer 9 toxin, elevated osmotic sensitivity to SDS and increased resistance to zymolyase, a (1→3)-β-glucanase. In this report, we further demonstrated that knr4 mutant cells were more permeable to a chromogenic substrate, X-GAL, suggesting that the mutant cell walls were leakier to certain non-permeable molecules. To determine if these defects resulted from structural changes in the cell walls, we analysed the alkali-insoluble cell wall components using HPLC assays developed for this purpose. Comparative analysis using four isogenic strains from a ‘knr4 disrupted’ tetrad demonstrated that mutant cell walls contained much less (1→3)-β-glucan and (1→6)-β-glucan; however, the level of chitin, a minor cell wall component, was found to be five times higher in the mutant strains compared to the wild-type strains. The data suggested that the knr4 mutant cell walls were dramatically weakened, which may explain the pleiotropic cell wall defects.  相似文献   

2.
Deletion of Saccharomyces cerevisiae BIG1 causes an approximately 95% reduction in cell wall beta-1,6-glucan, an essential polymer involved in the cell wall attachment of many surface mannoproteins. The big1 deletion mutant grows very slowly, but growth can be enhanced if cells are given osmotic support. We have begun a cell biological and genetic analysis of its product. We demonstrate, using a Big1p-GFP fusion construct, that Big1p is an N-glycosylated integral membrane protein with a Type I topology that is located in the endoplasmic reticulum (ER). Some phenotypes of a big1Delta mutant resemble those of strains disrupted for KRE5, which encodes another ER protein affecting beta-l,6-glucan levels to a similar extent. In a big1Deltakre5Delta double mutant, both the growth and alkali-soluble beta-l,6-glucan levels were reduced as compared to either single mutant. Thus, while Big1p and Kre5p may have similar effects on beta-l,6-glucan synthesis, these effects are at least partially distinct. Residual beta-l,6-glucan levels in the big1Deltakre5Delta double mutant indicate that these gene products are unlikely to be beta-l,6-glucan synthase subunits, but rather may play some ancillary roles in beta-l,6-glucan synthase assembly or function, or in modifying proteins for attachment of beta-l,6-glucan.  相似文献   

3.
Kluyveromyces lactis killer toxin causes sensitive strains of a variety of yeasts to arrest at the G1 stage of the cell cycle, and to lose viability. We describe here the isolation and characterization of a class of recessive mutations in Saccharomyces cerevisiae that leads to toxin resistance and a temperature-sensitive phenotype. These mutant cells arrest growth at 37°C with a characteristic phenotype of elongated buds. Cloning of the gene complementing these defects revealed it to be CAL1, coding for chitin synthase 3 activity. Calcofluor staining of the mutant cells indicated that chitin is absent both at 23°C and 37°C. Given that the CAL1 activity is responsible for the synthesis of most of chitin in yeast cells, and that in its absence the cells are viable but resistant to the killer toxin, our results strongly suggest that chitin might represent the receptor for this killer toxin.  相似文献   

4.
Saccharomyces cerevisiae kre5delta mutants lack beta-1,6-glucan, a polymer required for proper cell wall assembly and architecture. A functional and cell biological analysis of Kre5p was conducted to further elucidate the role of this diverged protein glucosyltransferase-like protein in beta-1,6-glucan synthesis. Kre5p was found to be a primarily soluble N-glycoprotein of approximately 200 kDa, that localizes to the endoplasmic reticulum. The terminal phenotype of Kre5p-deficient cells was observed, and revealed a severe cell wall morphological defect. KRE6, encoding a glucanase-like protein, was identified as a multicopy suppressor of a temperature-sensitive kre5 allele, suggesting that these proteins may participate in a common beta-1,6-biosynthetic pathway. An analysis of truncated versions of Kre5p indicated that all major regions of the protein are required for viability. Finally, Candida albicans KRE5 was shown to partially restore growth to S. cerevisiae kre5delta cells, suggesting that these proteins are functionally related.  相似文献   

5.
Glucan structure in a fragile mutant of Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
The phenotype of VY1160 fragile Saccharomyces cerevisiae mutant is characterized by cell lysis upon transfer to hypotonic solutions and increased permeability of cells growing in osmotically stabilized media. Two mutations, srb1 and ts1, have been identified in VY1160 cells and previous studies have shown that the increased permeability is due to the ts1 mutation which causes a shortening of mannan side-chains. Here we report that the srb1 mutation, which is the genetic determinant of cell lysis, is responsible for quantitative and structural changes of glucans. Experiments with isogenic single mutation strains, genetic studies coupled with quantitative measurements of glucan content per cell, and methylation analysis of glucans provide evidence that srb1 mutation leads to i) formation of mechanically unstable cell wall network made of insoluble glucan fibrils which are shorter and contain beta(1-6) inter-residue linkages and ii) insufficient filling of the space between the fibrils due to a shortage of the alkali-soluble glucan. Although growing exponentially in osmotically stabilized media, the srb1 cells cannot resist an osmotic shock and, hence, burst immediately.  相似文献   

6.
A reliable acid hydrolysis method for quantitative determination of the proportion of β-glucan, mannan and chitin in Saccharomyces cerevisiae cell wall is reported together with a simple extraction procedure to quantify within a standard error of less than 2% the proportion of the wall per gram of cell dry mass. This method is an optimized version of Saeman's procedure based on sulfuric acid hydrolysis of complex polysaccharides. It resulted in an almost complete release of glucose, mannose and glucosamine residues from cell wall polysaccharides. After complete removal of sulfate ions by precipitation with barium hydroxide, the liberated monosaccharides were separated and quantified by high performance anion-exchange chromatography with pulsed amperometric detection. The superiority of this method over the hydrolysis in either trifluoroacetic or hydrochloric acid resides in its higher efficiency regarding the release of glucose from β1,6-glucan and of glucosamine from chitin. The sulfuric acid method was successfully applied to determine the β-glucan, mannan and chitin contents in cell walls of genetically well-characterized yeast mutants defective in cell wall biosynthesis, and in Schizosaccharomyces pombe cell walls. The simplicity and reliability of this procedure make it the method of choice for the characterization of cell walls from S. cerevisiae mutants generated in the EUROFAN programme, as well as for other pharmacological and biotechnological applications. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
The yeast spore wall is an excellent model to study the assembly of an extracellular macromolecule structure. In the present study, mutants defective in β ‐1,6‐glucan synthesis, including kre1? , kre6? , kre9? and big1? , were sporulated to analyse the effect of β ‐1,6‐glucan defects on the spore wall. Except for kre6? , these mutant spores were sensitive to treatment with ether, suggesting that the mutations perturb the integrity of the spore wall. Morphologically, the mutant spores were indistinguishable from wild‐type spores. They lacked significant sporulation defects partly because the chitosan layer, which covers the glucan layer, compensated for the damage. The proof for this model was obtained from the effect of the additional deletion of CHS3 that resulted in the absence of the chitosan layer. Among the double mutants, the most severe spore wall deficiency was observed in big1? spores. The majority of the big1?chs3? mutants failed to form visible spores at a higher temperature. Given that the big1? mutation caused a failure to attach a GPI‐anchored reporter, Cwp2‐GFP, to the spore wall, β ‐1,6‐glucan is involved in tethering of GPI‐anchored proteins in the spore wall as well as in the vegetative cell wall. Thus, β ‐1,6‐glucan is required for proper organization of the spore wall. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Fks1p and Fks2p are related proteins thought to be catalytic subunits of the beta-1,3-glucan synthase. Analysis of fks1 delta mutants showed a partial K1 killer toxin-resistant phenotype and a 30% reduction in alkali-soluble beta-1,3-glucan that was accompanied by a modest reduction in beta-1,6-glucan. The gas1 delta mutant lacking a 1,3-beta-glucanosyltransferase displayed a similar reduction in alkali-soluble beta-1,3-glucan but did not share the beta-1,6-glucan defect, indicating that beta-1,6-glucan reduction is not a general phenotype among beta-1,3-glucan biosynthetic mutants. Overexpression of FKS2 suppressed the killer toxin phenotype of fks1 delta mutants, implicating Fks2p in the biosynthesis of the residual beta-1,6-glucan present in fks1 delta cells. In addition, eight out of 12 fks1ts fks2 delta mutants had altered beta-glucan levels at the permissive temperature: the partial killer resistant FKS1F1258Y N1520D allele was severely affected in both polymers and displayed a 55% reduction in beta-1,6-glucan, while the in vitro hyperactive allele FKS1T605I M761T increased both beta-glucan levels. These beta-1,6-glucan phenotypes may be due to altered availability of, and structural changes in, the beta-1,3-glucan polymer, which might serve as a beta-1,6-glucan acceptor at the cell surface. Alternatively, Fks1p and Fks2p could actively participate in the biosynthesis of both polymers as beta-glucan transporters. We analysed Fks1p and Fks2p in beta-1,6-glucan deficient mutants and found that they were mislocalized and that the mutants had reduced in vitro glucan synthase activity, possibly contributing to the observed beta-1,6-glucan defects.  相似文献   

9.
The mannosyltransferase mutants mnn9 and mnn10 were isolated in a genetic screen for septation defects in Saccharomyces cerevisiae. Ultrastructural examination of mutant cell walls revealed markedly thin septal structures and occasional failure to construct trilaminar septa, which then led to the formation of bulky default septa at the bud neck. In the absence of a functional septation apparatus, mnn10 mutants are unable to complete cytokinesis and die as cell chains with incompletely separated cytoplasms, indicating that mannosylation defects impair the ability to form remedial septa. We could not detect N-linked glycosylation of the beta(1,3)glucan synthase Fks1p and mnn10 defects do not change the molecular weight or abundance of the protein. We discuss a model explaining the pleiotropic effects of impaired N-linked protein glycosylation on septation in S. cerevisiae.  相似文献   

10.
Cystathionine β-synthase (β-CTSase), which catalyses cystathionine synthesis from serine and homocysteine, was purified to homogeneity from Saccharomyces cerevisiae. The molecular mass of the enzyme was estimated to be 235 kDa by gel filtration and 55 kDa by sodium dodecyl sulphate–polyacrylamide gel electrophoresis, indicating that it is a homotetramer. The N-terminal amino acid sequence of the enzyme perfectly coincided with that deduced from the nucleotide sequence of CYS4, except for the absence of initiation methionine. The purified β-CTSase catalysed cysteine synthesis from serine (or O-acetylserine) and H2S. From this finding, we discuss the multifunctional nature and evolutionary divergence of S-metabolizing enzymes.  相似文献   

11.
Human α1-antitrypsin (α1-AT) is a major serine protease inhibitor in plasma, secreted as a glycoprotein with a complex type of carbohydrate at three asparagine residues. To study glycosylation of heterologous proteins in yeast, we investigated the glycosylation pattern of the human α1-AT secreted in the baker's yeast Saccharomyces cerevisiae and in the methylotrophic yeasts, Hansenula polymorpha and Pichia pastoris. The partial digestion of the recombinant α1-AT with endoglycosidase H and the expression in the mnn9 deletion mutant of S. cerevisiae showed that the recombinant α1-AT secreted in S. cerevisiae was heterogeneous, consisting of molecules containing core carbohydrates on either two or all three asparagine residues. Besides the core carbohydrates, variable numbers of mannose outer chains were also added to some of the secreted α1-AT. The human α1-AT secreted in both methylotrophic yeasts was also heterogeneous and hypermannosylated as observed in S. cerevisiae, although the overall length of mannose outer chains of α1-AT in the methylotrophic yeasts appeared to be relatively shorter than those of α1-AT in S. cerevisiae. The α1-AT secreted from both methylotrophic yeasts retained its biological activity as an elastase inhibitor comparable to that of α1-AT from S. cerevisiae, suggesting that the different glycosylation profile does not affect the in vitro activity of the protein. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
To elucidate the roles of genes involved in the cell wall biogenesis and function in Saccharomyces cerevisiae, we isolated and characterized mutants that were lethal in a strain in which the SED1 gene encoding a cell wall mannoprotein was disrupted. Thus, double mutants of SED1 and either MNN9 or MNN10 were unable to grow and YOL155c on a multicopy plasmid could suppress their synthetic lethality. A Yol155cp-GFP fusion protein was found to localize to the cell wall, suggesting that it might also be a cell wall mannoprotein. Subsequently, we analysed the effects of the shut-off of SED1 in a sed1 and mnn9 double mutant: cells after the shut-off showed anomalous cellular morphology and died in the mitotic M phase. From these and other results, we postulate that these genes function cooperatively with each other and in a cell cycle-dependent manner in the biogenesis and maintenance of cell wall in S. cerevisiae.  相似文献   

13.
The α-galactosidase MEL2–MEL10 genes have been genetically mapped to right and left telomere regions of the following chromosomes of Saccharomyces cerevisiae: MEL2 at VII L, MEL3 at XVI L, MEL4 at XI L, MEL5 at IV L, MEL6 at XIII R, MEL7 at VI R, MEL8 at XV R, MEL9 at X R and MEL10 at XII R. A set of tester strains with URA3 inserted into individual telomeres and no MEL genes was used for mapping.  相似文献   

14.
A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β‐Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9‐fold higher than that of the wild‐type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild‐type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild‐type strain. The relative value (mnn2 deletion mutant/wild‐type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β‐glucosidase activity using p‐nitrophenyl‐β‐glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high‐molecular‐weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The common method for liberating proteins from Saccharomyces cerevisiae cells involves mechanical cell disruption using glass beads and buffer containing inhibitors (protease, phosphatase and/or kinase inhibitors), followed by centrifugation to remove cell debris. This procedure requires the use of costly inhibitors and is laborious, in particular when many samples need to be processed. Also, enzymatic reactions can still occur during harvesting and cell breakage. As a result low‐abundance and labile proteins may be degraded, and enzymes such as kinases and phosphatases may still modify proteins during and after cell lysis. We believe that our rapid sample preparation method helps overcome the above issues and offers the following advantages: (a) it is cost‐effective, as no inhibitors and breaking buffer are needed; (b) cell breakage is fast (about 15 min) since it only involves a few steps; (c) the use of formaldehyde inactivates endogenous proteases prior to cell lysis, dramatically reducing the risk of protein degradation; (d) centrifugation steps only occur prior to cell lysis, circumventing the problem of losing protein complexes, in particular if cells were treated with formaldehyde intended to stabilize and capture large protein complexes; and (e) since formaldehyde has the potential to instantly terminate protein activity, this method also allows the study of enzymes in live cells, i.e. in their true physiological environment, such as the short‐term effect of a drug on enzyme activity. Taken together, the rapid sample preparation procedure provides a more accurate snapshot of the cell's protein content at the time of harvesting. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
RCS1, a gene involved in controlling cell size in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Cloning and sequencing of RCS1, Saccharomyces cerevisiae gene whose product seems to be involved in timing the budding event of the cell cycle, is described. A haploid strain in which the 3'-terminal region of the chromosomal copy of the gene has been disrupted produces cells that are, on average, twice the size of cells of the parental strain. The critical size for budding in the mutant is similarly increased, and the disruption mutation is dominant in a diploid heterozygous for the RCS1 gene. Spores from this diploid have a reduced ability to germinate, the effect being more pronounced in the spores carrying the disrupted copy of RCS1. However, disrupted cells recover from alpha-factor treatment equally as well as wild-type cells.  相似文献   

17.
Purification of Saccharomyces cerevisiae cystathionine γ-lyase (γ-CTLase) was hampered by the presence of a protein migrating very close to it in various types of column chromatography. The enzyme and the contaminant were nevertheless separated by polyacrylamide gel electrophoresis. N-terminal amino acid sequence analysis indicated that they are coded for by CYS3(CYI1) and MET17(MET25), respectively, leading to the conclusion that CYS3 is the structural gene for γ-CTLase and that the contaminant is O-acetylserine/O-acetylhomoserine sulfhydrylase (OAS/OAH SHLase). Based on these findings, we purified γ-CTLase by the following strategy: (1) extraction of OAS/OAH SHLase from a CYS3-disrupted strain; (2) preparation of antiserum against it; (3) identification of a strain devoid of the OAS/OAH SHLase protein using this antiserum; and (4) extraction of γ-CTLase from this strain. Purified γ-CTLase had cystathionine γ-synthase (γ-CTSase) activity if O-succinylhomoserine, but not O-acetylhomoserine, was used as substrate. From this notion we discuss the evolutional relationship between S. cerevisiae γ-CTLase and Escherichia coli γ-CTSase.  相似文献   

18.
The allantoinase (DAL1) gene of Saccharomyces cerevisiae.   总被引:8,自引:0,他引:8  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号