首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphatidylinositol (PI) synthase (cytidine 5′-diphospho (CDP)-1,2-diacyl-sn-glycerol:myo-inositol 3phosphatidyltransferase, EC 2.7.8.11) was isolated from the microsomal cell fraction of Candida albicans. The Triton X-100 extracted enzyme was enriched 140-fold by affinity chromatography on CDP-diacylglycerol–Sepharose. The enzyme had a pH optimum at 9·5 in glycine/NaOH buffer. It had an absolute requirement for Mg2+ or Mn2+ and was inhibited by Ca2+ and Zn2+. Maximal activity was at 0·2–0·6 mm-CDP-diacylglycerol, higher concentrations inhibited the enzyme. With 2′-deoxy-CDP-diacylglycerol as the lipid substrate, optimal activity was at 0·7 mm. The Km for myo-inositol was determined to be 0·55 mm. The optimal temperature for the PI synthase reaction was 55°C. The C. albicans PI synthase shows differences to the Saccharomyces cerevisiae enzyme, such as activation by bivalent cations, inhibition by nucleotides, temperature optimum and activation energy, but also to the human PI synthase in preference for the lipid substrates, inhibition by nucleoside monophosphates and stabilization by Mn2+ and phospholipids.  相似文献   

3.
To study the function of RAP1, a Candida albicans gene (CaRAP1) that shows sequence similarity to RAP1 of Saccharomyces cerevisiae was isolated by colony hybridization. DNA sequencing predicted an open reading frame of 429 amino acids with an overall identity of 24% to the ScRap1p. The DNA binding domain (DBD) was highly conserved, and EMSA using a GST-CaRap1p fusion protein confirmed its binding ability to the RPG-box of S. cerevisiae ENO1. In contrast, the N-terminus was less conserved and a moderate homology was observed in the BRCT domain. Interestingly, CaRap1p did not contain the C-terminal activation/repression region of ScRap1p.  相似文献   

4.
The GGP1/GAS1/CWH52 gene of Saccharomyces cerevisiae encodes a major exocellular 115 kDa glycoprotein (gp115) anchored to the plasma membrane through a glycosylphosphatidylinositol (GPI). The function of gp115 is still unknown but the analysis of null mutants suggests a possible role in the control of morphogenesis. PHR1 gene isolated from Candida alibicans is homologous to the GGP1 gene. In this report we have analysed the ability of PHR1 to complement a ggp1Δ mutation in S. cerevisiae. The expression of PHR1 controlled by its natural promoter or by the GGP1 promoter has been studied. In both cases we have observed a complete complementation of the mutant phenotype. Moreover, immunological analysis has revealed that PHR1 in budding yeast gives rise to a 75–80 kDa protein anchored to the membrane through a GPI, indicating that the signal for GPI attachment present in the C. albicans gene product is functional in S. cerevisiae.  相似文献   

5.
6.
We have cloned NES24 using a temperature-sensitive nes24-1 mutant as a host and sequenced a 3162 bp XhoI-EcoRI DNA fragment containing the NES24 gene. Computer analysis revealed that this segment contains a 1806 bp open reading frame which is needed for complementation of the nes24-1 mutation. We found SUP8 in the region upstream of the NES24 gene, placing the NES24 gene on chromosome XIII. A protein homology search indicated that NES24 encodes a new protein. The disruption of the NES24 gene resulted in temperature-sensitive growth. The sequence has been deposited in DDBJ/EmBL/GenBank data bases under Accession Number D15052.  相似文献   

7.
The first gene coding for an amino-acid permease of Candida albicans was sequenced. The DNA fragment complementing the lysine-permease deficiency was 3385 bp long. An open reading frame of 1713 nucleotides was found encoding a protein of 571 amino acids, with a calculated molecular weight of 63 343. Analysis of the deduced primary structure revealed ten membrane spanning regions and three potential N-glycosylation sites. The protein sequence is strongly homologous to both permeases for basic amino acids (Can1 and Lyp1) of Saccharomyces cerevisiae. C-terminal part of another ORF (105 aa), highly homologous to the gene HAL2 of S. cerevisiae, was found 133 bp downstream, and in tail-to-tail orientation to the permease gene. The sequence data will appear in the EMBL/GenBank/DDBJ Nucleotide Sequence Data Libraries under the accession number X76689.  相似文献   

8.
9.
Structural genes of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae are coordinately regulated by a UAS element, designated ICRE (inositol/choline-responsive element). Opi1 is a negative regulator responsible for repression of ICRE-dependent genes in the presence of an excess of inositol and choline. Gene regulation by phospholipid precursors has been also reported for the pathogenic yeast Candida albicans. Screening of a data base containing raw sequences of the C. albicans genome project allowed us to identify an open reading frame exhibiting weak similarity to Opi1. Expression of the putative CaOPI1 in an opi1 mutant of S. cerevisiae could restore repression of an ICRE-dependent reporter gene. Similar to OPI1, overexpression of CaOPI1 strongly inhibited derepression of ICRE-driven genes leading to inositol-requiring transformants. Previous work has shown that Opi1 mediates gene repression by interaction with the pleiotropic repressor Sin3. The genome of C. albicans also encodes a protein similar to Sin3 (CaSin3). By two-hybrid analyses and in vitro studies for protein-protein interaction we were able to show that CaOpi1 binds to ScSin3. ScOpi1 could also interact with CaSin3, while CaOpi1 failed to bind to CaSin3. Despite of some conservation of regulatory mechanisms between both yeasts, these results suggest that repression of phospholipid biosynthetic genes in C. albicans is mediated by a mechanism which does not involve recruitment of CaSin3 by CaOpi1.  相似文献   

10.
MKT1 is required for m aintenance of K2 above 30°C in strains with the L-A-HN variant of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. We report that MKT1 encodes a 92 979 Da protein with serine-rich regions and the retroviral protease signature, DTG, but with no substantial homology to proteins presently in the databases. This sequence is available from GenBank under Accession Number U09129.  相似文献   

11.
12.
A Saccharomyces cerevisiae sequence cloned by serendipity was found to encode a protein that is a new member of the Ypt/Rab monomeric G-protein family. This sequence shows high homology to the yeast genes SEC4 and YPT1 and, like SEC4 and YPT1, is essential for viability. The sequence was localized to chromosome V based upon hybridization to pulse-field gel-separated yeast chromosomes. The sequence has been deposited in the GenBank data library under Accession Number L17070.  相似文献   

13.
A comparison of the sequences of telomere regions from several yeast chromosomes revealed an apparent cloning artifact for the right end of chromosome III. An integrating vector containing G1–3T telomere sequences was used to clone the right end of chromosome III from a strain related to S288C. The sequence of this clone confirmed that the published sequence was incorrect and demonstrated that the right telomere region of chromosome III is similar to other telomeres.  相似文献   

14.
During the sequencing of the gene GSP2 from Saccharomyces cerevisiae, we have encountered an adjacent open reading frame having strong homology to the 3-phosphoserine aminotransferase (E.C.2.6.1.52) from other organisms. In this report, we present the sequence for this yeast SERC, and evidence that its deletion from the yeast genome leads to serine dependency. The sequence has been deposited in the GenBank data library under Accession Number L20917.  相似文献   

15.
The function of the REV7 gene is required for DNA damage-induced mutagenesis in budding yeast, Saccharomyces cerevisiae, and is therefore thought to promote replication past sites of mutagen damage in the DNA template. We have cloned this gene by complementation of the rev7-2 mutant defect, and determined its sequence. REV7 encodes a predicted protein of Mr 28 759 which is unlike any other protein in the NCBI non-redundant protein sequence data base, and which is inessential for viability. The sequence of the 3·88 kb yeast genomic fragment containing REV7 has been deposited in Genbank accession number U07228.  相似文献   

16.
We have checked the ability of the Candida albicans GAPDH polypeptide, which lacks a conventional N-terminal signal peptide, to reach the cell wall in Saccharomyces cerevisiae by using an intracellular form of the yeast invertase as a reporter protein. A hybrid TDH3-SUC2 gene containing the C. albicans TDH3 promoter sequences and a coding region encoding a fusion protein formed by the C. albicans GAPDH polypeptide, fused at its C-terminus with the yeast internal invertase, was constructed in a centromer derivative plasmid and transformed into a Suc(-) S. cerevisiae strain. Transformants displayed invertase activity measured in intact whole cells, and were able to grow on sucrose as the sole fermentable carbon source. Northern blot analysis with both TDH3 and SUC2 probes detected a single mRNA species of the expected size (about 2.7 kb), and Western immunoblot analysis of cell-free extracts, using a monoclonal antibody (mAb49) against a C. albicans GAPDH epitope, showed the presence of a 90 kDa polypeptide corresponding to the GAPDH-invertase fusion protein. This indicates that the TDH3 gene is able to direct part of the encoded gene product to the cell wall, and that any putative motifs for this targeting should be within the GAPDH amino acid sequence. Further analysis, using the same approach, of a panel of seven N- and C-terminal GAPDH truncates revealed that the region required for the cell wall targeting is located within the N-terminal half of the protein.  相似文献   

17.
The Candida albicans orthologue of the SPC3 gene, which encodes one of the subunits essential for the activity of the signal peptidase complex in Saccharomyces cerevisiae, was isolated by complementation of a thermosensitive mutation in the S. cerevisiae SEC61 gene. The cloned gene (CaSPC3) encodes a putative protein of 192 amino acids that contains one potential membrane-spanning region and shares significant homology with the corresponding products from mammalian (Spc22/23p) and yeast (Spc3p) cells. CaSPC3 is essential for cell viability, since a hemizygous strain containing a single copy of CaSPC3 under control of the methionine-repressible MET3 promoter did not grow in the presence of methionine and cysteine. The cloned gene could rescue the phenotype associated with a spc3 mutation in S. cerevisiae, indicating that it is the true C. albicans orthologue of SPC3. However, in contrast with results previously described for its S. cerevisiae orthologue, CaSPC3 was not able to complement the thermosensitive growth associated with a mutation in the SEC11 gene. The heterologous complementation of the sec61 mutant suggests that Spc3p could play a role in the interaction that it is known to occur between the translocon (Sec61 complex) and the signal peptidase complex, at the endoplasmic reticulum membrane.  相似文献   

18.
We have sequenced a gene on the right arm near the telomere of chromosome II of Saccharomyces cerevisiae which codes for a putative P-type cation-transporting ATPase (PCA1). The gene codes for a 1216 amino acids protein. The PCA1 gene expresses a 3·5 kb message in both haploid and diploid cells when grown in glucose-based rich medium YPD. The gene product is most similar at the C-terminal region to a human copper-transporting ATPase and Enterococcus hirae copper-transporting ATPases and also an N-terminal dithiol region that was proposed to be a ‘metal-binding motif’. Cells lacking PCA1 display no obvious phenotype when tested under standard conditions; whereas they cease growth much earlier than the isogenic wild-type cells in a minimal medium with high copper concentration. Overexpression of PCA1 under GAL1/10 promoter in yeast cells causes poor growth. We also show that yeast strains carrying PCA1 in multiple copies grow slower than isogenic wild-type strains in a minimal synthetic medium containing 0·3 mM-CuSO4. The sequence has been deposited in the EMBL data library under Accession Number Z29332.  相似文献   

19.
The nucleotide sequence of lambda phage clone 4121, which contains the 18·8 kb fragment of Saccharomyces cerevisiae chromosome VI left arm, was determined. This sequence had seven open reading frames (ORFs), four of which were identical to known genes (ACT1, YPT1, TUB2 and RPO41). Another three ORFs (4121orfR003, 4121orfR004 and 4121orfRN001) were highly homologous to FET3 multi-copper oxidase, glucose transport protein, and hypothetical protein of YIL106w on chromosome IX, respectively. 4121orfRN01 is suggested to contain an intron. The sequence has been submitted to DDBJ/EMBL/GenBank data library under Accession Number D44598.  相似文献   

20.
A gene encoding the centromere binding factor 1 (Cbf1p) of the human pathogenic yeast Candida albicans was cloned and characterized. An open reading-frame was detected which encoded a 223 amino acid protein with a calculated molecular weight of 25.8 kDa and a relative isoelectric point of 5.55. It shares 39% overall amino acid sequence identity with Saccharomyces cerevisiae Cbf1p. We localized the CaCBF1 gene on chromosome 4. Southern analysis indicated that CaCBF1 is probably present as a single copy gene per haploid genome. The CaCBF1 gene under the control of its own promoter was able to complement the methionine auxotrophic growth, the increased mitotic instability of CEN plasmids and the slow growth of a Saccharomyces cerevisiae cbf1Delta mutant strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号