首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
目的 通过对激光选区熔化次数的控制,研究其对316L不锈钢表面晶相、化学成分和物理性能的影响规律,并最终获得综合性能优良的316L不锈钢表面.方法 在激光功率80 W、激光扫描速度500 mm/s、成形厚度0.03 mm、扫描间距0.06 mm条件下,通过改变激光选区熔化次数成形试件,并通过光学显微镜(OM)、电子扫描...  相似文献   

3.
<正> 奥氏体不锈钢是核聚变反应堆的理想材料。普通的316L奥氏体不锈钢,经固溶处理后获得完全的奥氏体组织,但力学性能不是太好。S.Degallaix等指出,氮的合金化能明显提高316L钢的室温和高温下的单调及循环性能。J.B.Vogt等人作了氮和温度对316L钢疲劳性的影响的试验,来说明低周疲劳和疲劳裂纹扩展时,其宏观性能与显微组织之间的关系。低周疲劳和疲劳扩散试验及其结果分析如下。  相似文献   

4.
奥氏体不锈钢的一种新型表面硬化技术简介   总被引:2,自引:0,他引:2  
通过碳的弥散来达到奥氏体不锈钢表面硬化的技术(Kolsterising)最初发源于荷兰,2003年被介绍到北美并得到了进一步发展。采用该技术处理的奥氏体不锈钢在耐摩擦、磨损性能,疲劳寿命,耐孔蚀性以及耐应力腐蚀开裂性能等方面均有明显的提高。与通常情况不同,由于工艺的特殊性,这些性能的提高并不伴随常见的耐蚀性下降。  相似文献   

5.
为进一步研究固溶热处理工艺对316L低碳奥氏体不锈钢性能的影响,采用光学显微镜、扫描电子显微镜、透射电子显微镜、电子万能试验机等设备研究了不同固溶热处理工艺条件下316L不锈钢的显微组织和力学性能。结果表明:在1 080~1 150℃固溶温度和60~300 min固溶时间范围内,随着固溶热处理温度的升高、固溶热处理时间的延长,316L奥氏体不锈钢强度降低,伸长率增大,硬度值整体变化不大,冲击功呈上升趋势;316L奥氏体不锈钢组织中小角度晶界和大于45°的大角度晶界占比相对较大,大角度晶界能阻碍裂纹扩展,小角度晶界能降低界面能,对316L奥氏体不锈钢的强化产生积极作用;采用1 080℃、60 min固溶热处理后,316L奥氏体不锈钢的屈服强度为264 MPa,抗拉强度为553 MPa,伸长率为61%,布氏硬度值为141HBW,20℃冲击功可达306 J,晶间腐蚀性能合格,综合性能优异。  相似文献   

6.
于耀  白琴  夏爽  刘黎明  杨辉  宣禹澄 《上海金属》2021,43(3):13-18,25
对316与316 L奥氏体不锈钢进行晶界工程处理:拉伸至5%的变形量,在1100℃分别保温45和60 min后水淬.将未经过和经过晶界工程处理的316和316 L钢进行650℃ ×5 h敏化处理,随后进行耐晶间腐蚀试验.结果表明:经过晶界工程处理的两种不锈钢低Σ重合位置点阵(CSL,Σ≤29)晶界比例提高到了75%以上...  相似文献   

7.
不降低耐蚀性的奥氏体及双相不锈钢的表面硬化处理   总被引:1,自引:0,他引:1  
一种富碳处理工艺可使奥氏体及双相不锈钢的表面硬度提高到1000-1200HV而不形成碳化铬沉淀,因此,尽管百化层达到20-50μm,却不会降低材料的耐蚀性。这种处理对消除那些不锈钢对粘着磨损的敏感性非常有效。  相似文献   

8.
采用动电位极化曲线、电化学阻抗谱、X射线光电子能谱等研究了固溶处理(固溶温度范围为800~1200℃,保温时间为1 h)对06Cr23Mn22MoN高氮无镍奥氏体不锈钢耐腐蚀性能的影响。结果表明:高氮无镍奥氏体不锈钢耐腐蚀性能主要受第二相、钝化膜及晶粒尺寸的影响;固溶温度由800℃升高到1100℃,随着Cr_2N的逐渐消除,实验钢的耐腐蚀性能逐渐改善;在固溶温度为1100℃时,Cr_2N向表面富集反应生成NH_4~+和NH_3并吸附在钝化膜表面,提高了钝化膜的稳定性,实验钢的耐腐蚀性能最好;当固溶温度高于1100℃时,晶粒长大会降低表面原子活性,形成钝化膜的速度减慢,导致实验钢的耐腐蚀性能降低。  相似文献   

9.
316L奥氏体不锈钢压力容器的焊接   总被引:1,自引:0,他引:1  
尹彦军  戴红石 《焊接》2003,(9):42-42
某厂委托我厂制作以下 316L不锈钢压力容器 :洗涤器 2台 ,规格80 0mm× 5 0 0 0mm× 8mm ,设计压力0 .8MPa,Ⅰ类压力容器 ;过滤器 2台 ,规格70 0mm× 20 0 0mm× 8mm ,设计压力 1.1MPa ,Ⅱ类压力容器。我厂初次接触 ,为保证焊接质量 ,制定出了如下焊接工艺。1 焊接方法及材料根据 316L钢的特点及板厚 ,选用手工电弧焊焊接 ,电源极性为直流反接。选用E316L - 16 (A0 2 2 )焊条 ,直径3.2mm。2 坡口形状及尺寸为了使焊缝熔合良好及便于操作 ,采用V形坡口 ,用刨边机加工。由于电流较小 ,钝边稍留小一些 ,便于熔透 ,其尺寸如图 1所示…  相似文献   

10.
抗菌处理对含Cu奥氏体抗菌不锈钢组织和性能的影响   总被引:1,自引:0,他引:1  
研究了含Cu奥氏体抗菌不锈钢的两种抗菌处理方法对其组织、抗菌性能、机械性能和耐腐蚀性能的影响。结果表明:不同的抗菌处理影响了抗菌不锈钢基体中富Cu相的析出,低温长时间抗菌处理得到的组织中富Cu相比高温短时间抗菌处理得到的富Cu相更细密,细密的富Cu相对大肠杆菌和金黄色葡萄球菌的抗菌性更好。与304不锈钢相比,含Cu奥氏体抗菌不锈钢经抗菌处理后对机械性能没有产生明显的影响,耐腐蚀性也没有明显的下降。  相似文献   

11.
316L奥氏体不锈钢的腐蚀行为   总被引:2,自引:0,他引:2  
综述了316L奥氏体不锈钢应用过程中的腐蚀行为,包括晶间腐蚀、应力腐蚀开裂、缝隙腐蚀、环烷酸腐蚀、大气腐蚀和海水腐蚀。同时介绍了合金元素Mo、N和Al,以及电解质类型、温度、浓度等因素对其腐蚀行为的影响。最后讨论了应用中存在的问题,并对未来的发展做了一些展望。  相似文献   

12.
对2205双相不锈钢采用不同温度进行热处理,然后用光学显微镜和电子扫描电镜观察其在0.33mol/L FeCl3+0.05 mol/L HCl溶液中腐蚀后的形貌;测试其显微硬度的变化、在沸腾的65%的硝酸溶液中浸蚀24 h的腐蚀速率和在25℃的3.5%NaCl溶液中的点蚀电位。研究表明:2205双相不锈钢在750~900℃保温4h有σ相析出,材料的显微硬度增大。同时随着热处理温度的升高,2205双相不锈钢的点蚀电位降低,腐蚀速率增大。  相似文献   

13.
目的提高316L不锈钢的耐腐蚀性能。方法在316L不锈钢样品表面涂覆主要成分为1,2-二(三乙氧基硅基)乙烷(BTSE)的硅烷涂层。通过电化学分析测试,评价涂覆硅烷涂层的316L不锈钢的耐蚀性,并通过扫描电子显微镜和扫描电化学显微镜对其表面形貌进行分析。结果在相同的腐蚀环境下,与未涂覆硅烷涂层的316L不锈钢样品相比,涂覆硅烷涂层样品的表面更加光滑,点蚀现象明显好转。电化学测试结果显示,涂覆硅烷涂层的316L不锈钢样品的腐蚀电位为?565.02m V,未涂覆硅烷涂层样品的腐蚀电位为?796.01 mV,前者明显高于后者,其腐蚀倾向明显减小。另外,涂覆硅烷涂层的316L不锈钢样品的腐蚀电流为2.5177μA,未涂覆硅烷涂层样品的腐蚀电流为5.4291μA,涂覆硅烷涂层样品的腐蚀电流明显更小,表现出了更好的耐腐蚀性能。通过观察扫描电化学显微镜图像可以得出,未涂覆硅烷涂层的316L不锈钢样品的电流范围为?3.144×10?9~?1.957×10?9 A,涂覆硅烷涂层的316L不锈钢样品的电流范围为?3.004×10?9~?1.975×10?9A,涂覆硅烷涂层样品的电流范围更窄,腐蚀程度明显减轻。结论在316L不锈钢表面涂覆硅烷涂层可以在一定程度上减缓样品的腐蚀程度,硅烷涂层起到了物理屏障的作用,显着提高了316L不锈钢的耐腐蚀性。  相似文献   

14.
王军  刘莹 《表面技术》2016,45(11):76-80
目的研究316L不锈钢生物医用材料植入体内初期的表面行为。方法在模拟体液中,采用浸泡实验,表征了316L不锈钢浸泡不同时间的表面形貌、润湿性及耐腐蚀性。结果白光干涉测试结果表明,样品表面粗糙度随浸泡时间的延长而变大。浸泡1 d后,在样品表面出现大量无规则的腐蚀坑,腐蚀坑内出现金属的溶蚀。润湿性测试结果显示,随浸泡时间的延长,316L不锈钢的接触角减小,亲水性增强,表面能增加。电化学测试表明,浸泡1周后,316L不锈钢的自腐蚀电流为浸泡前的3倍多,腐蚀速度增大,耐腐蚀性变差。结论在模拟体液中,316L不锈钢表面存在局部腐蚀,材料的表面形貌、成分、润湿性及耐腐蚀性均发生改变。  相似文献   

15.
杨献金  姜志祥 《腐蚀与防护》2012,(7):630-633,637
将445铁素体不锈钢的主要化学成分、力学性能、成型性能和焊接性能等基本性能与304奥氏体不锈钢进行对比,结果表明,445不锈钢具有较好的机加工性能。采用盐雾试验及10%的NaCl溶液加速腐蚀试验等方法,对比445水箱、304水箱及两者混合搭配的内胆水箱的太阳能热水器的耐腐蚀性能。结果表明,445不锈钢耐腐蚀性稍逊于304不锈钢,在80~120℃时,445与304不锈钢均发生蒸汽腐蚀、水线腐蚀,且445不锈钢出现较为严重的点蚀现象。  相似文献   

16.
采用电化学测试法、点腐蚀试验法、盐雾腐蚀试验法和慢应变速率测试法,分别对比研究了核级316NG控氮奥氏体不锈钢和321奥氏体不锈钢的局部腐蚀行为,并利用扫描电子显微镜、光学显微镜等分别观察腐蚀后不锈钢的表面形貌。结果表明:316NG和321不锈钢晶间腐蚀再活化率分别为3.83%和4.47%,点腐蚀速率分别为10.74g/(m2·h)和45.97g/(m2·h),盐雾腐蚀速率分别为2.14×10-2 g/(m2·h)和12.32×10-2 g/(m2·h),应力腐蚀开裂敏感指数分别为0.078和0.10;316NG不锈钢中N和Mo元素提高了其耐局部腐蚀性能,因此其耐局部腐蚀性能均优于核电站结构材料321不锈钢的。  相似文献   

17.
激光熔覆316L不锈钢涂层组织和性能的研究   总被引:5,自引:4,他引:1  
目的提高45#钢的使用性能和耐蚀性。方法以316L不锈钢粉末为熔覆材料,在45钢退火基体表面制备不锈钢熔覆层,采用CCD中心组合设计,利用金相法检测熔覆层的几何形貌参数,利用光学显微镜(OM)和扫描电镜(SEM)分析熔覆层的显微组织,采用显微硬度计和磨损试验机测试熔覆层的显微硬度和磨损性能,利用电位极化曲线测试熔覆层的耐腐蚀性能。结果当激光功率为600 W,扫描速度为22.5mm/s,送粉速率为0.18 r/min时,熔覆层与基体呈良好的冶金结合。熔覆层的硬度在461.3~559.8HV,是基材硬度的2倍左右;磨损量为0.0146 g,是基材的0.1倍;摩擦系数较为稳定,保持在0.5左右,是基材的0.3倍左右;自腐蚀电流密度为3.274×10~(-7) A/cm~2,是基材的0.7倍左右。结论在45钢表面激光熔覆316L不锈钢涂层后,可有效提高其耐磨性和耐蚀性。  相似文献   

18.
目的解决冲压中加工硬化导致的高强度低塑性的问题。方法提出以矩形光斑的温控模式激光为热源,对工件进行选区瞬时退火,达到局部软化的目的。通过金相显微分析、显微硬度分析、力学拉伸及断口分析,分别评价激光瞬时退火软化后试样显微组织、显微硬度、抗拉强度、断后伸长率和断口形貌。结果金相组织显示,不同工艺条件下的晶粒大致呈现变形晶粒、再结晶晶粒、细小晶粒和较大等轴晶4种状态。由显微硬度可知,固溶态母材硬度为173HV0.2,加工硬化后达到341HV0.2。当激光温控温度为1400℃,扫描速度分别为5、10、15 mm/s时,软化处理后硬度分别为164、173、257HV0.2。而扫描速度一定时,激光温控温度越高,软化处理后硬度越低。对试样做室温拉伸试验发现,激光瞬时退火后强度降低,塑性提高。当温控温度为1400℃,扫描速度为5 mm/s时,抗拉强度由加工硬化后的911 MPa下降到591 MPa,接近固溶态母材的570 MPa,断后伸长率由18.2%恢复到54.7%,达到固溶态母材的95.5%。结论激光瞬时退火软化可有效降低加工硬化后的材料强度,提高材料塑性,使其恢复大变形能力。其软化程度随激光温控温度的降低、激光扫描速度的提高而降低,在较优工艺参数下,激光瞬时软化后性能甚至优于母材性能。  相似文献   

19.
316L不锈钢柠檬酸钝化工艺及其耐点蚀性能研究   总被引:3,自引:2,他引:1  
采用正交试验方法研究了316L不锈钢柠檬酸钝化工艺,利用电化学测试方法测量了不锈钢焊接接头各部位在钝化前后点蚀电位的变化,并以此评价钝化工艺对不锈钢耐点蚀性能的影响.研究结果表明,由正交试验优选出的最优配方和工艺为:柠檬酸、双氧水、乙醇的质量分数分别为3%、10%、5%,温度25℃,钝化时间90 min.此工艺配方可大大提高316L不锈钢整体的耐点蚀性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号