首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究玻璃纤维-不锈钢网混杂增强环氧树脂层合板在球形弹高速斜冲击下的损伤特性,利用一级气炮对2 mm厚度的玻璃纤维增强环氧树脂复合材料层合板和含一层、三层304不锈钢网的玻璃纤维-不锈钢网混杂增强环氧树脂层合板进行倾角为30°的冲击实验,以揭示304不锈钢网对层合板弹道极限和能量吸收的影响规律,并分析层合板损伤特征及其机理。通过实验发现,含有三层不锈钢网层合板的弹道极限最高,而不含不锈钢网层合板和含一层不锈钢网层合板的弹道极限速度接近。层合板吸收的能量随着弹体速度增加呈现出先增加后趋于平稳,然后急剧上升的趋势。层合板损伤模式为基体开裂和破碎、分层、不锈钢丝拉伸断裂、纤维拉伸断裂和剪切断裂。层合板分层损伤面积随弹体速度增大先增大后减小,最后趋于稳定。当弹体速度较低时,层合板主要发生纤维拉伸断裂、基体开裂、层间有分层损伤产生。随着弹体速度的增大,层合板正面纤维逐渐发生压剪断裂、基体破碎,背面纤维发生严重的拉伸撕裂。   相似文献   

2.
目的 比对波纹轧制结构和平面复合结构的Mg/Al复合板抗冲击性能与吸能机制.方法 采用波纹辊轧制工艺制备Mg/Al复合板,使用半球形铝合金弹丸对传统平面复合板与波纹复合板进行不同速度下的冲击试验研究,并对比分析2种复合板的损伤机理,探明波纹结构对复合板抗冲击性能的影响.结果 Mg/Al平面复合板抗半球形弹丸冲击的吸能机制主要是通过靶板的塑性变形、剪切破坏、拉伸断裂、分层破坏和弹丸与靶板间摩擦等形式来吸收能量.波纹复合板对冲击能量的吸收主要依赖靶板的局部塑性变形、沿着波纹方向的开裂、结合界面的分层以及弹丸与靶板间的摩擦耗能.结论 当冲击速度低于弹道极限速度时,波纹复合板的抗冲击性能优于平面复合板,高于弹道极限速度时,2种复合板的抗冲击性能和耗能程度相当.  相似文献   

3.
为了揭示TC4钛合金板抗撞击性能与失效模式随厚度的变化规律及机理,采用ABAQUS/Explicit有限元软件建立平头弹撞击不同厚度靶板的模型,对弹体撞击不同厚度靶板进行计算。通过对比数值仿真与撞击实验结果,验证仿真模型的有效性。研究结果表明,靶板的主要失效模式、耗能机制、弹道极限随其厚度增加会发生改变,靶板厚度存在对应的转折值。对于TC4钛合金薄板,当靶板厚度比较小时,靶板拉伸撕裂破坏占主导作用。但是,当靶板厚度比较大时,靶板主要失效模式是局部剪切破坏。当靶板厚度小于4 mm、大于8 mm时,弹道极限速度随靶板厚度的增加而增加;当厚度为4~8 mm时,弹道极速度变化不明显。  相似文献   

4.
Composite structures under ballistic impact   总被引:6,自引:0,他引:6  
In the present study, investigations on the ballistic impact behaviour of two-dimensional woven fabric composites has been presented. Ballistic impact behaviour of plain weave E-glass/epoxy and twill weave T300 carbon/epoxy composites has been compared. The analytical method presented is based on our earlier work. Different damage and energy absorbing mechanisms during ballistic impact have been identified. These are: cone formation on the back face of the target, tensile failure of primary yarns, deformation of secondary yarns, delamination, matrix cracking, shear plugging and friction during penetration. Analytical formulation has been presented for each energy absorbing mechanism. Energy absorbed during each time interval and the corresponding reduction in velocity of the projectile has been determined. The solution is based on the target material properties at high strain rate and the geometry and the projectile parameters. Using the analytical formulation, ballistic limit, contact duration at ballistic limit, surface radius of the cone formed and the radius of the damaged zone have been predicted for typical woven fabric composites.  相似文献   

5.
Resistance to high velocity impact is an important requirement for high performance structural materials. Even though, polymer matrix composites are characterized by high specific stiffness and high specific strength, they are susceptible to impact loading. For the effective use of such materials in structural applications, their behaviour under high velocity impact should be clearly understood. In the present study, investigations on the ballistic impact behaviour of two-dimensional woven fabric composites have been presented. Ballistic impact is generally a low-mass high velocity impact caused by a propelling source. The analytical method presented is based on wave theory. Different damage and energy absorbing mechanisms during ballistic impact have been identified. These are: cone formation on the back face of the target, tension in primary yarns, deformation of secondary yarns, delamination, matrix cracking, shear plugging and friction during penetration. Analytical formulation has been presented for each energy absorbing mechanism. Energy absorbed during each time interval and the corresponding reduction in velocity of the projectile has been determined. The solution is based on the target material properties at high strain rate and the geometry and the projectile parameters. Using the analytical formulation, ballistic limit, contact duration at ballistic limit, surface radius of the cone formed and the radius of the damaged zone have been predicted for typical woven fabric composites. The analytical predictions have been compared with the experimental results. A good correlation has been observed.  相似文献   

6.
An experimental investigation of the forces produced by the penetration and perforation of thin aluminum and steel plates by cylindro-conical and hemispherically-tipped projectiles at 0, 15, 30 and 45° angles of incidence has been performed. Additionally, force histories were recorded for normal impact on Lexan, nylon and ceramic targets by conically-tipped strikers. Similar tests on Kevlar were not successful owing to the generation of voltages by rubbing of fibers that completely overwhelmed the transducer signal. A piezoelectric crystal bonded to the tail of the 12.7 mm diameter, 30 g projectiles followed by an inertial mass and a trailing wire provided the instrumentation. The strikers were propelled by means of a pneumatic gun at velocities ranging from 45 to 170 ms−1. Displacement data obtained from high-speed photography for selected runs allowed curve fits to an analytical function which were compared to the directly recorded force histories.The effects of changes in initial velocity, angle of obliquity and striker tip on the peak force have been analyzed. A simple model has been developed for the perforation of plates by hemispherically-tipped projectiles at oblique incidence, and comparisons have been made with the measured force histories. A model was also devised to predict the peak forces obtained for oblique impact by cylindro-conical projectiles. The peak forces obtained experimentally were found to be relatively independent of the initial projectile velocity for shots where perforation occured. For the tests at speeds below the ballistic limit, the maximum forces were approximately proportional to the initial velocity.  相似文献   

7.
A numerical study of conical projectiles for perpendicular impact on a thin steel plate is reported. The target material considered, Weldox 460 E steel, is frequently used for this kind of application and several results of experiments are available in the international literature to verify numerical simulations. The Johnson-Cook constitutive relation coupled with the Johnson-Cook failure criterion have been applied to analyse penetration of the target and also the failure process. The analysis has been focussed on the influence of the projectile diameter on the perforation process, assuming the same projectile mass. The aim was to preserve the same initial kinetic energy and identical nose angle. The goal is to estimate the ballistic limit, the residual velocity, the plastic work, and the temperature levels produced during the penetration process. The analysis has shown a linear increase of the ballistic limit with the projectile diameter.  相似文献   

8.
为研究弹体头部形状对碳纤维层合板抗冲击性能的影响,利用一级气炮发射卵形头弹、半球形头弹和平头弹,对2 mm厚碳纤维层合板进行了冲击实验。利用公式拟合处理实验数据,揭示弹体头部形状对靶板弹道极限与能量吸收的影响,并且分析靶板冲击损伤形貌及机理特征。研究结果表明:平头弹弹道极限最高,半球形头弹次之,卵形头弹最低。弹体在低速度冲击时,弹体头部形状对靶板能量吸收率的影响更为显著。平头弹冲击时,靶板迎弹面受到均匀分布的环向剪切力,纤维同时被剪切,基体发生大面积剪切破坏。半球形头弹冲击时,靶板迎弹面受到非均匀分布的剪切力和挤压作用,纤维发生剪切断裂和拉伸断裂,基体发生剪切破坏和挤压破碎。卵形头弹冲击时,纤维发生单一的拉伸断裂,而基体则发生挤压破碎。弹体头部形状对靶板损伤的影响主要集中在迎弹面和中部纤维层。  相似文献   

9.
The high velocity impact response of composite laminated plates has been experimentally investigated using a nitrogen gas gun. Tests were undertaken on sandwich structures based on Kevlar-29 fiber/epoxy resin with different stacking sequence of 6061-T6 Al plates. Impact testing was conducted using cylindrical shape of 7.62 mm diameter steel projectile at a range of velocities (180–400 m/s) were investigated to achieve complete perforation of the target. The numerical parametric study of ballistic impact caused by same conditions in experimental work is undertaken to predict the ballistic limit velocity, energy absorbed by the target and comparison between simulation by using ANSYS Autodyn 3D v.12 software and experimental work and study the effects of shape of the projectile with different (4, 8 and 12 mm) thicknesses on ballistic limit velocity. The sequence of Al plate position (front, middle and back) inside laminate plates of composite specimen was also studied. The Al back stacking sequence plate for overall results obtained was the optimum structure to resist the impact loading.The results obtained hereby are in good agreement with the experimental (maximum error of 3.64%) data where it has been shown that these novel sandwich structures exhibit excellent energy absorbing characteristics under high velocity impact loading conditions. Hence it is considered suitable for applications of armor system.  相似文献   

10.
This paper presents experimental and numerical investigations on ballistic impact behaviors of GLARE 5 fiber-metal laminated (FML) beams of various thicknesses. A high-speed camera was used to measure impact and residual/rebound velocities and also to assess damage evolution in the FMLs. The incident projectile impact velocity versus the residual velocity (VIVR) was plotted and numerically fitted according to the classical Lambert–Jonas equation for the determination of ballistic limit velocity, V50. The results showed that the V50 varied in a parabolic trend with respect to the metal volume fraction (MVF) and specimen thickness. The interfacial debonding as well as bending and stretching in aluminum layers played the significant roles in dissipating the impact energy in the GLARE 5 FML beams. The 3D finite element (FE) code, LS-DYNA, was used to model and validate the experimentally obtained results. Good agreement between experimental and numerical results was achieved. It was found that for a given specimen configuration, by increasing the projectile incident velocity up to its V50, the maximum contact force increased. By further increasing the projectile velocity above its V50, the maximum contact force was relatively invariant with respect to an increase in the projectile incident velocity.  相似文献   

11.
High-velocity transverse impact of laminated fiber reinforced composites is of interest in military, marine and structural applications. The overall objective of this work was to investigate the behavior of laminated thermoplastic composites of varying thicknesses under high-velocity impact from an experimental and modeling viewpoint. In order to analyze this problem, a series of ballistic impact tests have been performed on plain weave E-glass/polypropylene (E-glass/PP) composites of different thicknesses using 0.30 and 0.50 caliber right-cylinder shaped projectiles. A gas gun with a sabot stripper mechanism was employed to impact the panels. In order to analyze the perforation mechanisms, ballistic limit and damage evaluation, an explicit three-dimensional finite element code LS-DYNA was used. Material model 162, a progressive failure model based on modified Hashin’s criteria, has been assigned to analyze failure of the laminate. The projectile was modeled using Material model 3 (MAT_PLASTIC_KINEMATIC). The laminates and the projectile were meshed using brick elements with single integration points. The impact velocity ranged from 187 to 332 m s−1. Good agreement between the numerical and experimental results was attained in terms of predicting ballistic limit, delamination and energy absorption of E-glass/PP laminate.  相似文献   

12.
使用Abaqus/Explicit有限元分析软件,开展平头弹撞击不同厚度双层TC4钛合金板数值模拟,研究双层TC4钛合金板撞击失效特性与失效模式随厚度变化规律及机理。通过对比撞击试验与仿真结果,验证数值模型和参数的有效性。在此基础上与等厚度单层TC4钛合金板的抗侵彻性能进行对比,结果表明,对于12.68 mm直径的平头弹,在靶板厚度2~16 mm内,双层结构的弹道极限与总厚度近似呈线性关系。由于单层靶板在4~10 mm内随着厚度增加,弹道极限无明显变化,所以等厚接触式双层结构在该厚度范围相比单层靶有明显的优势。在总厚度为8 mm时,双层靶优势最为明显,弹道极限相比单层靶提高了43%左右。  相似文献   

13.
This paper concerns energy absorption during projectile penetration of thin, lightweight sandwich panels with metallic fibre cores. The panels were made entirely of austenitic stainless steel (grade 304). The faceplates were 0.4 mm thick and the core (∼1–2 mm thick) was a random assembly of metallic fibres, consolidated by solid state sintering. The impact tests were simulated using ABAQUS. Faceplate behaviour was modelled using the Johnson and Cook plasticity relation and a strain rate-dependent, critical plastic strain failure criterion. The core was modelled as an anisotropic, compressible continuum, with failure based on a quadratic, shear stress-based criterion. The experimental data show that, with increasing impact velocity, the absorbed energy decreased from the ballistic limit, reached a minimum value, and then underwent a monotonic increase. The FEM modelling demonstrates that this increase arises from the kinetic energy of ejected fragments, while the energy absorbed by plastic deformation and fracture tends to a plateau. Normalised absorbed energies have been compared to values for single faceplates. The sandwich panels are marginally superior to single plates on an areal density basis.  相似文献   

14.
This paper investigates the ballistic limits, energy absorption behaviour and the mechanisms that lead to perforation in Twaron® CT 716 plain-woven, single-ply fabric by different shaped projectiles. The projectile shapes tested are flat head, hemispherical head, ogival head (CRH 2.5) and conical head (half angle of 30°).Results show that while the amount of energy absorbed by the fabric is quantitatively different for all four projectiles, they show similar trends—energy absorbed increases with impact velocity up to a critical impact velocity before it starts to decrease. The energy absorption capability of the Twaron® fabric is explained by considering how impact energy is converted to strain energy and kinetic energy of the fabric. Each projectile shape was also found to perforate the fabric through different mechanisms—yarn rupture, fibrillation, failure by friction, and bowing.  相似文献   

15.
The ballistic performance of 17 penetrator materials, representing 5 distinct steel alloys treated to various hardnesses along with one tungsten alloy, has been investigated. Residual lengths and velocities, as well as the ballistic limit velocities, were determined experimentally for each of the alloy types for length-to-diameter (L/D) ratio 10 projectiles against finite-thick armor steel targets. The target thickness normalized by the projectile diameter (T/D) was 3.55. For some of the projectile types, a harder target, with the same thickness, was also used. It was found that the ballistic limit velocity decreases significantly when the projectile hardness exceeds that of the target. Numerical simulations are used to investigate some of the observed trends. It is shown that the residual projectile length is sensitive to projectile hardness; the numerical simulations reproduce this experimental observation. However, the observed trend in residual velocity as a function of projectile hardness is not reproduced in the numerical simulations unless a material model is invoked. It is assumed that the plastic work per unit volume is approximately a constant, that is, there is a trade off between strength and ductility. Using this model, the numerical simulations reproduce the experimentally observed trend.  相似文献   

16.
In the present study, effect of hybridization on the hybrid composite armors under ballistic impact is investigated using hydrocode simulations. The hybrid composite armor is constructed using various combinations and stacking sequences of fiber reinforced composites having woven form of fibers specifically high specific-modulus/high specific-strength Kevlar fiber (KF), tough, high strain-to-failure fiber Glass fiber (GF) and high strength/high stiffness Carbon fiber (CF). Different combinations of composite armors studied are KF layer in GF laminate, GF layer in KF laminate, KF layer in CF laminate and CF layer in KF laminate at various positions of hybridized layers for a fixed thickness of the target. In this article the results obtained from the finite element model are validated for the case of KF layer in a GF laminate with experimental predictions reported in the literature in terms of energy absorption and residual velocity and good agreement is observed. Further, the effect of stacking sequence, projectile geometry and target thickness on the ballistic limit velocity, energy absorbed by the target and the residual velocity are presented for different combinations of hybrid composite armors. The simulations show that, at a fixed thickness of the hybrid composite armor, stacking sequence of hybridized layer shows significant effect on the ballistic performance. The results also indicate energy absorption and ballistic limit velocity are sensitive to projectile geometry. Specifically, it is found that arranging the KF layer at the rear side, GF layer in the exterior and CF layer on the front side offers good ballistic impact resistance. The hybrid composite armor consisting of a CF layer in KF laminate acquires maximum impact resistance and is the best choice for the design compared to that of other combinations studied.  相似文献   

17.
This paper concerns energy absorption in thin (0.4 mm) steel plates during perforation by spherical projectiles of hardened steel, at impact velocities between 200 and 600 m s−1. Absorbed energies have been obtained from measured incident and emergent projectile velocities. These tests were simulated using ABAQUS/Explicit, using the Johnson and Cook plasticity model. A strain rate-dependent, critical plastic strain fracture criterion was employed to model fracture. Good agreement is obtained between simulations and experiment and the model successfully captures the transitions in failure mode as projectile velocity increases. At velocities close to the ballistic limit, the plates fail by dishing and discing. As the incident velocity is increased, there are two transitions in failure mode, firstly to shear plugging and secondly to fragmentation and petalling. The simulations also show that, during the latter mode of failure, the kinetic energy of ejected debris is significant, and failure to include this contribution in the energy balance leads to a substantial over-estimate of the energy absorbed within the sheet. Information is also presented relating to the strain rates at which plastic deformation occurs within the sample under different conditions. These range up to about 105 s−1, with the corresponding strain rate hardening effect being quite substantial (factor of 2–3 increase in stress).  相似文献   

18.
利用一级气炮发射卵形头弹撞击2 mm厚度的编织复合材料层合板,撞击角度分别为0°、30°和45°,通过高速相机记录弹靶撞击过程,并获得弹体速度数据。基于拟合公式处理试验数据,计算获取弹道极限,分析撞击角度对弹道极限、靶板能量吸收率及其失效模式的影响规律及机制。结果表明:弹体撞击角度为45°时,靶板弹道极限最高,其次为0°,撞击角度为30°时最小。随着冲击角度增加,层合板损伤形状从菱形逐渐转变为椭球形,损伤面积随冲击速度增加而增大,且45°冲击时层合板损伤面积最大,0°和30°冲击时损伤面积近似相等。弹体初始撞击角度对靶体失效模式存在影响,弹体撞击角度为0°时,纤维断口主要是剪切应力导致的横截面。撞击角度为30°时,纤维断口主要是剪切应力和拉伸应力导致的斜截面。45°斜撞击时,纤维断口主要是拉伸应力导致的横截面。  相似文献   

19.
三维编织复合材料弹道侵彻准细观层次有限元计算   总被引:10,自引:0,他引:10       下载免费PDF全文
三维编织复合材料相比于层合复合材料有较高的层间剪切强度和断裂韧性,因而具有更高的冲击损伤容限。用钢芯弹对三维编织复合材料作弹道贯穿测试,得到弹体的入射速度和剩余速度,并考察侵彻破坏模式。目前对三维编织复合材料弹道侵彻性能计算主要建立在连续介质假设上,从真实细观结构计算三维编织复合材料弹道冲击性能尚有一定难度,用三维结构复合材料的纤维倾斜模型在准细观结构层次上分解三维编织复合材料,就其中的一块倾斜单向板作弹道侵彻有限元计算,由弹体动能损失得到贯穿整个复合材料靶体后弹体的剩余速度。有限元计算及与弹道测试结果的比较证明在准细观层次上计算三维编织复合材料弹道冲击性能的有效性。   相似文献   

20.
In this paper, an analytical model for perforation of composite sandwich panels with honeycomb core subjected to high-velocity impact has been developed. The sandwich panel consists of a aluminium honeycomb core sandwiched between two thin composite skins. The solution involves a three-stage, perforation process including perforation of the front composite skin, honeycomb core, and bottom composite skin. The strain and kinetic energy of the front and back-up composite skins and the absorbed energy of honeycomb core has been estimated. In addition, based on the energy balance and equation of motion the absorbed energy of sandwich panel, residual velocity of projectile, perforation time and projectile velocity have been obtained and compared with the available experimental tests and numerical model. Furthermore, effects of composite skins and aluminium honeycomb core on perforation resistance and ballistic performance of sandwich panels has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号